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INTRODUCTION 

Sickle cell anemia is a genetic blood disorder that 

affects the shape and function of red blood cells. In a 

healthy person, red blood cells are round and flexible, 

allowing them to flow smoothly through blood 

vessels. However, in people with sickle cell anemia, 

these cells are shaped like a crescent or sickle. Image 

processing techniques can be used to differentiate 

between sickle cells and normal red blood cells by 

analyzing various visual features such as shape, size, 

and color. These methods can significantly aid in 

improving diagnostic accuracy and streamlining 

medical workflows. Employing advanced algorithms 

can help identify abnormalities with greater speed and 

precision. Furthermore, such tools can assist 

researchers in studying the disease’s progression and 

evaluating the effectiveness of treatments. This 

flowchart describes an image processing pipeline for 

sickle cell anemia detection and classification in 

medical diagnosis scenario. 

  

 

  

 

 
Fig. 1. Flow chart 

Start: The process begins. 

Upload image: The system first requires an RBC 

image to be uploaded. 

Image pre-processing: The uploaded image 

undergoes pre- processing, which may involve 
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operations like noise reduction, resizing, contrast 

adjustment, or other enhancements to improve the 

quality of the image for further analysis. 

Feature extraction: Important features are extracted 

from the pre-processed image. Features could include 

texture, color, shapes, or any other distinctive 

attributes that help identify whether the image 

represents a defect or disease. 

Classification: Based on the extracted features, the 

image is classified using CNN algorithm. RBCs can 

be classified into normal cell, sickle cell and 

thalassemia cell. The classification determines 

whether the RBC in the image has a ‘defect’ (sickle 

cell anemia/ thalassemia) or not. High-resolution 

images of the red blood cells are collected from 

SCDIR (Sickle Cell Disease Image Repository). This 

is a specialized repository for sickle cell-related data. 

It includes images of blood smears showing both 

sickle-shaped and normal red blood cells. The data set 

includes 3 classes; Normal cell, Sickle cell and 

Thalassemia cell. Both sickle cell anemia and 

thalassemia are inherited blood disorders that affect 

hemoglobin production and lead to anemia, but they 

are caused by different genetic mutations. Image pre-

processing is done in order to enhance the quality of 

the image and makes it ready for analysis. Deep 

learning technique called CNN (Convolutional Neural 

Network) is used to classify the images. CNNs can 

automatically learn features from the images without 

manual feature extraction [1]. After training on 

labeled data (sickle vs. normal cells vs. thalassemia), 

CNNs can classify cells with high accuracy. The goal 

is to develop a system that can distinguish the 

characteristic crescent or sickle shape of red blood 

cells seen in sickle cell anemia from the normal disc-

shaped cells. 

 
Fig. 2. System architecture 

A popular Convolutional Neural Network (CNN) 

architecture VGG16 is designed to handle high-

resolution images. The small 3x3 convolutional filters 

used by VGG16 capture fine details and patterns, 

making it effective at detecting slight deformations in 

red blood cells. To manage and process the large-scale 

dataset of the RBCs, Google Colab is used. Google 

Colab can provide robust computational resources 

through its provision of free access to GPUs and 

TPUs. This access is crucial for performing the 

computationally intensive tasks associated with 

training and evaluating deep learning models. 

Fig. 3. Sequence diagram 
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II. METHODOLOGY 

A. Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are a type of 

deep learning technology. They are a specialized kind 

of neural network designed to process and analyze 

data with grid-like topology, particularly for image 

processing tasks. CNN consists of several layers, 

including convolutional layers, pooling layers, fully 

connected layers, and activation layers. CNN 

eliminates the need for manual feature extraction, 

which is crucial for detecting subtle shape changes in 

sickle cells. As the network deepens, it starts learning 

more complex patterns, such as cell contours and 

inner texture variations, which are useful in 

identifying abnormal cells. Sickle cells can appear in 

different orientations (rotated, flipped) in blood smear 

images. CNN can handle this variability due to the 

properties of convolutional layers, which detect 

features regardless of their position or orientation in 

the image. CNN uses back-propagation to adjust the 

weights by calculating the error gradient. Pooling 

layers reduce the spatial dimensions of feature maps 

while retaining the most important information. This 

ensures that the model focuses on critical features 

such as the irregular shape or pointed ends of sickle 

cells, while discarding irrelevant background 

information. 

1) Model Description: Pre-trained models like 

ResNet or VGG16 can be fine-tuned on the sickle cell 

dataset to enhance performance with smaller datasets. 

VGG16 is designed to handle high-resolution images 

which helps in identifying small and subtle features. 

It consists a small 3x3 convolutional filter that detect 

slight deformations in red blood cells. VGG16 works 

well with various image processing techniques such 

as image augmentation (rotation, zoom, shift, flip, 

translation, scale, shear, crop, color jittering) and 

normalization. With proper tuning and dataset-

specific training, VGG16 can achieve high accuracy 

in distinguishing normal RBCs from sickle cells. 

There are three classes in this experiment and requires 

a Multi-Class Classification. 

 
A label is the actual value or category that the model 

is supposed to predict for each input example. Labels 

can be binary, multi-class, or continuous depending 

on the type of problem. The process involves dataset 

preparation, training, testing and evaluation of the 

model. Implementation was done in Google Colab to 

speed up training and inference processes 

significantly. 

2) Data pre-processing: Data preprocessing is 

done to prepare raw data for analysis or model 

training. Preprocessing ensures that the data is in a 

suitable format for the model and significantly 

improve model accuracy and performance. For 

classifying RBCs using VGG16, preprocessing 

ensures that the images are standardized, noise is 

reduced, and important features (such as the shape of 

cells) are retained. VGG16 requires a fixed input size 

for images. Image resizing libraries (e.g., OpenCV, 

PIL) are used to ensure that all RBC images match the 

input size required by VGG16. The input to VGG16 

is an image of size 224x224 pixels with three color 

channels (RGB). All images in the dataset need to be 

resized to this fixed size [1]. Pixel values in images 

typically range from 0 to 255. Normalizing these 

values to a range between 0 and 1 can help improve 

the training process and prevent numerical instability 

in deep learning models. Divide the pixel values by 

255 to scale them into the range of [0,1]. Since 

medical datasets like RBC images are often small, 

data augmentation techniques are used to artificially 

increase the size of the dataset and improve model 

generalization. This can help VGG16 recognize RBCs 

in different orientations or under varied conditions. 

Transformations such as rotation, flip- ping, shifting, 

zooming, or brightness adjustment are applied. 

Blood smear images may contain noise such as 

background artifacts or image distortions. Reducing 

noise can improve the quality of input images, making 

it easier for VGG16 to learn distinguishing features 

between normal, sickle cells and thalassemia cells. 

Filters such as Gaussian blur or median filters can be 

used to smooth out the noise. If the dataset is 

imbalanced, techniques like oversampling or under-

sampling can be used to balance the classes. Over-

sampling can generate synthetic minority class 

samples, while under-sampling can reduce the 

majority class to improve balance. By balancing the 

dataset, these techniques prevent the model from 

being biased toward the majority class, ensuring that 

it can learn to recognize both normal cells and 

defective cells effectively. 

B. Experimental setup 
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The proposed model for detecting sickle cell anemia 

was developed and trained using the Google Colab 

platform. Google Colab can provide numerous 

advantages, especially in handling deep learning 

models, large datasets, and resource- intensive 

computations. Google Colab provides free access to 

powerful hardware such as GPUs (Graphics 

Processing Units) and TPUs (Tensor Processing 

Units). VGG16 requires significant computational 

power and utilizing Colab’s GPU/TPU can drastically 

speed up model training and testing, for image 

processing tasks. Google Colab supports easy 

integration with Google Drive, allowing seamless 

access to large datasets. This is particularly useful if 

the local system cannot handle large volumes of data 

or storage is limited. Google Colab makes it easy to 

import popular libraries like TensorFlow and Keras, 

which come with access to pre-trained models such as 

VGG16. Using Colab allows to leverage these models 

for transfer learning, significantly reducing the time 

and resources needed to train from scratch. 

Colab allows to share notebook with collaborators 

easily. All experiments, code, and results are saved in 

a single notebook, ensuring that the entire 

experimental setup is re- producible. Colab can 

handle multiple training runs and hyper-parameter 

tuning without the need for local computational 

resources. This allows to perform extensive 

experiments on deep learning models, adjusting 

architectures, learning rates, optimizers, and data 

augmentation techniques without performance 

bottlenecks. It also supports libraries like OpenCV, 

PIL, and TensorFlow, which are crucial for 

preprocessing images in sickle cell detection. It is 

possible to perform data augmentation, resizing, 

normalization, and other transformations needed to 

enhance the quality of the dataset and improve model 

performance. Google Colab supports visualization 

libraries such as Matplotlib, Seaborn, and 

TensorBoard to help visualize training progress, 

accuracy, loss, and other key metrics. Data 

visualization tools help in understanding model 

performance and predictions. 

C. Training 

SCDIR (Sickle Cell Disease Image Repository) is 

used for collecting required dataset. The dataset is 

then split into training, validation, and test sets to 

ensure that the model generalizes well on unseen data. 

Dataset was divided as 80 percent for training, 10 

percent for validation, and 10 percent for testing. If 

the dataset is large and cannot fit into memory, batch 

processing can be used to load a subset of images into 

memory during training. Ensure that the dataset is 

properly labeled. Fine-grained labels are used to 

distinguish between sickle cells and thalassemia cells. 

Use a pre-trained CNN like VGG16 to take advantage 

of transfer learning. The model is trained on large 

datasets like ImageNet and can be easily fine- tuned 

for sickle cell classification. For fine-tuning, remove 

or modify the final fully connected layers of the pre-

trained model to adapt it to the number of classes. An 

appropriate loss function should be chose based on the 

task. For multi-class classification, categorical cross-

entropy is used. Optimizer like Adam adjusts learning 

rates dynamically during training, leading to faster 

convergence. Define the batch size (e.g., 32 or 64), 

depending on the available computational resources 

and set the number of epochs (iterations over the 

entire dataset) for training. Applying dropout layers in 

the model can prevent overfitting. Stop training once 

the validation loss stops improving. 

D. Model evaluation 

Model evaluation is the process of assessing how well 

a trained model performs on unseen data. The purpose 

is to measure the model’s generalization ability and to 

ensure that it meets the performance requirements of 

the task. It involves using various performance 

metrics and methods to understand how accurately 

and effectively the model can make predictions based 

on cell images. Model evaluation allows to detect 

potential issues like overfitting, underfitting, or biases 

in the model. It also helps in comparing different 

models or model configurations to select the best one. 

1) Performance metrics: In deep learning tasks 

like image classification, it’s important to have 

quantifiable metrics to measure success. Model 

evaluation allows to compute these metrics, such as 

accuracy, precision, recall, F1-score, AUC- ROC for 

classification tasks. The model does not typically 

update its weights after seeing each individual 

sample. Instead, the dataset is divided into smaller 

groups called batches. The batch size determines how 

many samples the model processes before updating its 

weights.  
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Once all batches in the dataset have been processed, 

one epoch is completed. An epoch refers to one 

complete pass of the entire training dataset through 

the model. The model is trained for several epochs to 

adjust its parameters. Initially, in Epoch 1, the training 

accuracy was 0.8029, and the validation accuracy 

achieved a promising 0.93437, reflecting good 

generalization early on. In Epoch 2, despite a jump in 

training accuracy to 0.9260, the validation accuracy 

did not improve, suggesting the potential onset of 

slight overfitting. Finally, in Epoch 5, the model 

achieved its best performance, with training accuracy 

at 0.9739 and validation accuracy at 0.98333, 

highlighting excellent generalization capabilities. 

 
Fig. 4. Training and validation loss 

A graph is generated representing the training loss and 

validation loss. Both training and validation loss 

should decrease and ideally converge. 

 
Fig. 5. Training and validation accuracy 

Training accuracy and validation accuracy are also 

plotted. During each epoch the Training and 

validation accuracy im- proves and attained an 

optimal value at the fifth epoch. 

 
Fig. 6. Confusion matrix 

A confusion matrix is generated to evaluate the 

performance of the classification model. It allows to 

visualize how well a model classifies different classes 

by displaying the number of correct and incorrect 

predictions made by the model. Each row in the 

matrix represents the actual class, and each column 

represents the predicted class. The diagonal values 

represent the number of correctly predicted instances 

for each class, while the off-diagonal values represent 

the misclassifications. 

 
Fig. 7. Multi-class confusion matrix structure 

• True positives (TP) 

TP0: Correct predictions for class 0 TP1: Correct 

predictions for class 1 TP2: Correct predictions for 

class2 

• False positives (FP) 

FP0: Instance from class 1 incorrectly classified as 0 

FP1: Instance from class 2 incorrectly classified as 0 

FP2: Instance from class 2 incorrectly classified as 1 

• False negatives (FN) 

FN0: Instance from class 0 incorrectly classified as 1 

FN1: Instance from class 0 incorrectly classified as 2 

FN2: Instance from class 1 incorrectly classified as 2 

In Fig.6, 106 instances were correctly classified as 

sickle cell, 0 were predicted as class 1, and 10 were 

misclassified as class 

2. 339 instances were correctly classified as normal 

cell, and no misclassifications occurred. 270 instances 
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were correctly classified as Thalassemia cell, but 9 

were incorrectly classified as class 0, and 1 as class 1. 

This matrix helps to find out the performance 

parameters like accuracy, precision, recall, F1- score 

etc. 

E. Results 

For multi-class classification, performance 

parameters can be computed for each class or 

averaged across all classes. True Positives (TP), False 

Positives (FP), False Negatives (FN), and True 

Negatives (TN) are key values that are used to attain 

final results. These values identify errors in the model 

and help understand its performance in each class. 

Analyzing these metrics helps pinpoint specific areas 

where the model is underperforming, such as 

misclassifying certain classes. Additionally, these 

metrics provide insight for more detailed optimization 

of the model, enabling adjustments to thresholds. 

Accuracy is the ratio of correctly predicted instances 

(both positive and negative) to the total number of 

predictions. 

 
Precision is the ratio of correctly predicted positive 

instances (true positives) to the total predicted 

positives. 

 
Recall is the ratio of correctly predicted positive 

instances (true positives) to the total actual positives 

(true positives and false negatives) 

 
The F1-score is the harmonic mean of precision and 

recall, providing a balanced measure to account for 

both false positives and false negatives. 

 

 
Fig. 8. Performance parameters 

In Fig.8 , macro average refers to the unweighted 

average of a performance metric (such as precision, 

recall, or F1-score) across all classes in a multi-class 

classification problem. Each class contributes equally, 

regardless of the number of samples (support) in that 

class. Weighted average is the average of a 

performance metric (such as precision, recall, or F1-

score) across all classes, where the contribution of 

each class is weighted by the number of instances 

(support) in that class. Classes with more data points 

have a greater influence on the final metric value. 

Support refers to the number of actual instances of 

each class in the dataset. The calculated accuracy of 

the model VGG16 was 97.2 percentage. 

 
Fig. 9. Comparison of CNN models 

The bar chart illustrates the comparative performance 

of three deep learning models VGG16, ResNet, and 

MobileNet in detecting sickle cell disease, with their 

accuracy percentages represented on the vertical axis. 

The accuracy values range between 90 percent and 

100 percent, and the chart highlights the varying 

performances of the models. Among the three models, 

VGG16 demonstrates the highest accuracy, achieving 

close to 97 percent. This indicates its superior ability 

to identify sickle cell disease with a minimal error 

rate, making it the most effective model in this study. 

The high accuracy of VGG16 can be attributed to its 

robust architecture and extensive feature extraction 

capabilities, which allow it to accurately capture the 

complex patterns associated with sickle cell 

abnormalities. Following VGG16, the ResNet model 

achieves an accuracy of approximately 95 percent, 

showcasing competitive performance. ResNet’s 

relatively high accuracy can be attributed to its deep 

residual network architecture, which mitigates issues 

such as vanishing gradients, enabling efficient 

training of deeper networks. However, its 

performance still falls slightly short of VGG16, 

indicating room for further optimization or fine-

tuning. In contrast, MobileNet achieves the lowest 

accuracy among the three models, at approximately 

92 percent. While MobileNet’s lightweight 
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architecture makes it well-suited for deployment on 

mobile and edge devices, its relatively lower accuracy 

suggests that it may struggle to capture the intricate 

features needed for precise sickle cell detection. This 

trade-off between computational efficiency and 

accuracy highlights the model’s limitations for tasks 

requiring high precision. 

The results indicate that while all three models 

perform well, VGG16 emerges as the most accurate 

and reliable model for detecting sickle cell disease. 

ResNet follows closely behind, and MobileNet, 

though efficient, lags in accuracy. These findings 

suggest that for critical applications like sickle cell 

detection, model accuracy should be prioritized over 

computational efficiency to ensure reliable results. 
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