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INTRODUCTION 

Substratum of continuity 

In calculus the first incident of tossing the word 

‘continuity’ has been traced with reference to a 

function ψ: R → 𝑅. In calculus, we have seen that the 

limit of a function 𝜓(𝑥), as 𝑥 → 𝑎 can often be found 

by computing the value of the function at the point 𝑎. 

Functions possessing such a property are called 

continuous at 𝑎. The most popular device for 

continuity, that is prominently being adopted by entire 

modern mathematical community is mentioned as 

below. 

 
Figure 1: Screen of motivation for continuity 

Calculus device for continuity- A function 𝜓(𝑥) is 

continuous at a number 𝑎 if the following three steps 

hold. 

First. 𝜓(𝑎) is defined (i.e., 𝑎 lies in the domain of 𝜓) 

Second. lim
𝑥→𝑎

𝜓(𝑥) exists (i.e., 𝜓 must be defined on an    

                open interval containing 𝑎). 

Third. lim
𝑥→𝑎

𝜓(𝑥) = 𝜓(𝑎) 

 

However, like the convergence, function ’s continuity 

has been a subtle and extremely important notion 

which is not only utilized in Calculus, but in almost 

every branch of mathematics. In fact, continuity is 

probably the single most important concept in all the 

mathematical premises. Admitting in mind that ‘a 

function is a way to walk from one set to another’, 

or speaking topologically, ‘a function is a way to 

transform one topological space into another’. When 

the function is continuous, most of the crucial features 

that the domain space possesses (e.g., like being all in 

one piece, being open, being closed, being compact 

etc.) are maintained into their existential form, under 

the transformation, so that the image space could also 

retains these features. This kind of preservation of 

such crucial features is of the utmost importance in 

topology. Such an act of preservation of crucial 

features of mathematical objects by the continuity of 

mathematical function is being practiced by human 

being in many senses. For instance, now a days we are 

giving emphasis upon ‘sustainable use of natural 

resources’-which straightforwardly means- using 

natural resources without harming the nature, i.e., 

being aware of “human act (function) to mother nature 

(domain) so that the quality (being natural) of 

codomain (mother earth) remain intact”   

The pragmatic and splendid outcome of continuity in 

almost all the mathematical disciplines is that “any 

shape, maintaining its continuity can be elucidated by 

a single equation”. However, if there are fractures or 

interruptions in continuities of shapes (e.g., sharp 

edges and singularities etc.), then more than one 

equation would be needed to define the fractured parts 

of the shape under consideration. In spite of continuity 
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being a highly insisted device specifically offered by 

calculus and Topology, from aesthetic point of view, 

it is sometimes felt necessary to break the seamless-

ness of shapes, so that more advanced and beautiful 

shapes could be evolved (e.g., evolving particular 

geometric structures by breaking the continuity of flat 

surface material).  

The present digest is focused on exploring the 

concept- ‘continuity’, from the various dimensions of 

history. More explicitly, it has been tried to nest the 

historically generated thoughts, ideas, axioms, 

definitions and results regarding continuity. In 

particular, the standpoints of Philosophers, 

Geometers, Arithmetizers and Topologists have been 

referred to weave the fabric of the ‘continuity’. 

2. ‘Continuity’ in the time of Aristotle and Euclid 

Henri Poincaré in 1905 held that- ‘primarily, what 

properties of ‘space’ are responsible to call the so-

called space a ‘mathematical space’? In response to 

this question, he evoked three of the properties of any 

mathematical space, namely: 

1. It is continuous 

2. It is infinite 

3. It is of three dimensions 

Perhaps, the emergence of clearer ideas of 

‘continuity’ gradually came into full swing from 17th 

century onwards, wherein the literal meaning of the 

world ‘continuity’ had been assumed to be “seamless, 

unbroken, uninterrupted or ceaseless”. And thus, the 

mathematical entity, which in modern mathematics is 

called the ‘continuum’ is assumed as an ‘unseparated 

or pause-less or cavity free thing’. Further, it has been 

heuristically supposed that most of the physically 

phenomena such as displacement, velocity, growth of 

living entity etc. are continuous in nature as they vary 

with time. Even, many philosophers have evoked that 

space and time and natural processes occur 

continuously, for instance, Leibnitz made a famous 

argument that “nature makes no jump”. The 

geometrical entities such as lines, planes and solids 

have also been considered either as aggregations of 

infinitesimal parts or the accumulation generated by 

the flow of some entity. However, there are the 

situations where this argument gets infringed- e.g., the 

discontinuity occurs in case of electric current.  

Besides the above contemplation on ‘continuity’, if 

we switch back history, we can find a long lasting and 

vibrant debate over this issue. The very first 

emergence of ideas of ‘continuity’ and ‘infinitesimal’ 

in mathematics can be found with Greek atomist 

philosopher Democritus (450 BC) and then with 

Eudoxus (350 BC). The doctrines, they followed in 

delineating ‘continua as infinitely divisible entity’, is 

now familiar to us as ‘divisionism’. At the prima 

facie, the approach of ‘divisionism’ encapsulates a 

long chain of logics and is being discussed in the 

following subsection (2.1). 

1.1. Prima facie of ‘divisionism’ 

Observations made by Democritus and Eudoxus have 

been interpreted by (J. L. Bell, 2005a) as follows: 

• The very nature of the ‘continuum’ or the 

‘continua’ is- being indivisible or unbreakable.  

But the seamlessness or the unity of continua 

never implies that its ingredients are not 

divisible. In fact, the indivisibility of continua 

means that endless recursive division of it is 

always possible. That is the entity which can be 

divided everlastingly. Thus, the basic 

characteristic of continua is that- such an entity 

can be decomposed into ever smaller entities, 

provided the process of decomposition never 

terminates.  One can explicitly think of 

continuum as;  

‘continuum’ ≈ an entity consisting of entities 

which are ‘continuum’ themselves 

• The witness, for example in nature, could be the 

magnet- as if we crush it and even turn it into 

powder form, even then each of its corpuscle 

shall retain the property of magnetism. Further, 

to feel the potential of continuum, one can 

consult the fractal analysis (see figure-2) 

 
Figure 2 motivational pictures of 'continua' 

where each part of these pictures can be endlessly 

divided into ever smaller parts. 

• The infinitesimal magnitude of the continuum can 

be informally conceived as a continuum itself, 

i.e., the smallest possible parts of the continuum 

can be though superficially as a continuum.   
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• The philosophy of continuity gives rise the sense 

of ‘being connected’  

2.2 Aristotelian standpoint to continuity 

Drawing inspiration from the logical chain of the 

thought held by Democritus and Eudoxus, Aristotle 

(384-322 BC) proposed an idea that- ‘the theme 

infinitesimal is tangled with the notion of continuity’. 

Soon, this idea led him to the flowing arguments: 

• With his geometrical signature line, Aristotle 

made an observation that- “Nothing that is 

continuous, Aristotle held, can be composed of 

indivisibles”. (Evans, 1955)  

• Behind this, Aristotle gave the logics that- as time 

is not constituted of instances, likewise a line is 

not constituted of points, because both the time 

and line are continua. Also, by continua, he meant 

that- “which is divisible into divisibles, that are 

further divisible”  

• He proposed that a continuous magnitude is- ‘that 

allows it to be dissected into infinite number of 

parts.  

• It was made clear by him that though a line 

cannot be dismantled into infinite number of 

pieces, even then it is an aggregation of infinite 

number of points, and thus it retains continuity. 

• From the above supposition, it becomes precise 

that, as per geometrical viewpoint of Aristotle- 

the continuity of a line entirely depends upon the 

continuity of motion.  

• He further argued that-continuous magnitude is 

perceived due to ‘motion’ and therefore, ‘it is the 

motion, which is directly responsible for the 

generation of continuous magnitude’. For, clear 

understanding, he mentioned an example- A 

moving point generates a line and a moving line 

generates a surface.  

• With the above ideas, Simplicius(Urmson, 2014) 

(Baltussen et al., 2014)  rephrased Aristotle’s 

principle in a nutshell as: 

“A line is the fluxion of the point” 

Eventually, Aristotle in his book ‘Aristotle’s Physics’ 

ended his quest for continuity with two criteria, as 

follows: 

• Aristotle’s criteria for continuity: Aristotle said 

that- something is said to be continuous if  

✓ The entities or things whose limit, at which 

they touch, is one(Lang, 1992)   

✓ That thing or entity, which is divisible into 

what is always further divisible(Sachs, 1995) 

3. The Axioms of continuity- in the time of Euclid 

The great flux of logics over continuity, continua and 

infinitesimal, propagated from Democritus (450 BC), 

Eudoxus (350 BC), Aristotle (384-322 BC) and 

Simplicius (490-560 AD) led Euclid (300 BC) to 

refine his fundamental propositions of geometry, 

which he quoted in his famous book Euclid’s 

Element(Euclid, 1956). Indeed, Euclid found axioms 

of continuity as a suitable tool to minimize the number 

of pauses in his postulates of geometry. One of his 

first postulates, which he refined with the aid of 

‘principle of circular continuity’ can be taken into 

consideration as an example here. Consider the 

following arguments, which Euclid gave to justify his 

first and foremost proposition: 

3.1 First and the foremost proposition of Euclid 

Postulate (I): “Given any segment, there is an 

equilateral triangle having the given segment as one 

of its sides”(Conover, 2014) (Greenberg, 1993) 

(Thomas & Thomas, 2003) (Heath, 1926) 

 Proof: Starting the proof with the fundamental idea 

on the construction of ‘line’ would help us 

understating the more complex proof to the present 

postulate. (Longo, 2012),  (Longo, 2015) has 

fantastically analyse and synthesize upon the 

construction of the first fundamental structure of 

Greek Geometry.   

If we simply go through the Euclid’s book of 

Geometry, we can easily observe that in the entire 

Greek Geometry, the invention of first and 

fundamental mathematical structure has been the ‘line 

with no thickness.’ In fact, no Euclidean line is 

possible without acting a trace and without no 

thickness (Longo, 2015). Clearly a gesture alone or 

logic alone cannot describe the line. This simply 

means that ‘lines are ideal objects’ and thus they can 

be thought to be a cohesive continuum with no 

thickness (Longo, 2012).   In Euclidean geometry- 

when two thick-less (1-dimensional) lines suitably 

intersect with each other, produce a point (no-

dimensional structure). With these much of 

fundamental structures, Greek geometry moved 

towards the invention of continuous lines with no 

thickness and the geometer called such a construct-an 

abstract divine construct. (Longo, 2012) synthesized 

that- no matter, a line is continuous or discrete, it is 

always a gestalt rather than a set of points.     
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For the sake of convenience, let us now sketch the 

proof of Euclid in a step-by-step sequence of logics as 

follows: 

Step 1- Let PQ be any given line segment. Now, with 

centre P and radius PQ, describe a circle QRS (under 

Euclid’s 3rd postulate, see(Euclid, 1956) (Heath, 

1926)) (See Figure 3) 

Step 2- Again, by assuming Q as a centre and QP as 

radius, we can describe another circle PRT using the 

same Euclid’s postulate-III(Euclid, 1956) (Heath, 

1926)].  (See Figure 3) 

 
Figure 3: Notion of Circular Continuity under 

Euclid’s postulate-III 

Step 3- From a point R, at which the circles C1 and 

C2 intersects each other, sketch the line segments RP 

and RQ (under the Euclid ’s postulate-I(Euclid, 1956) 

(Heath, 1926) ). 

Step 4- Now, because P is the centre of circle C1 and 

Q is the centre of C2, PR will be congruent to PQ (in 

view of circle’s définition). 

Step 5- Similarly, Q being the centre of circle C2, 

clearly QR will be congruent to QP due to the 

definition of circle.  

Step 6- Finally, since RP and RQ are congruent to PQ 

(due to steps 4 and 5),  

Step 7- Consequently, the △ PRQ is an equilateral 

triangle, having PQ as one of its sides. 

Observation- Now if we keenly look back each of the 

logical steps we outlined above, it seems that the proof 

is flawless. But observing the 3rd step above, we 

conclude that our belief on the fact  ‘that two circles 

intersect each other at point R  ’is due to the diagram 

drawn (Figure 3). It means if we do not allow 

ourselves to use diagram, the step 3rd become less 

explicit and therefore, we need some additional axiom 

to prove that circles described in the proof of Euclid ’s 

first proposition intersect each other.  

Thus, to make step 3rd more precise or explicit, let us 

go through the principle of circular continuity. 

Definition-1: Principle of circular continuity 

This statement enunciates that  “If a circle C1 has one 

point inside and one point outside another circle C2, 

then the two circles intersect at two points.” 

In circular continuity, the notion of ‘inside/ outside’ a 

circle is utilized by stating that a point U is inside a 

circle having centre O and radius 𝑂𝑉 if 𝑂𝑈 < 𝑂𝑉  and 

the same point lies outside if 𝑂𝑈 > 𝑂𝑉. 

The notion of ‘inside/ outside’ can be made precise 

with the assistance of elementary doctrine of 

continuity, which states the following:  

Definition-2: Elementary doctrine of continuity  

“Consider a segment of straight line. If one end 

point of this segment lies inside a circle and other 

end point outside the circle, then such a segment 

intersects the circle.”  

But what makes the above two principles-the 

continuity principles? The answer must be in the 

geometry sketch (See Figure A2), wherein a line 

segment with the help of a pencil is drawn by moving 

the pencil continuously from a point P to Q. It ’s very 

much obvious that such a drawing should traverse a 

circle having centre say O and it’s also natural to say 

that if, it does not happen like this, there must be a 

‘hole  ’present either on the line segment or on the 

boundary of circle.  

 
Figure A2: (a): geometrical interpretation of 

elementary continuity, where a line segment PQ is 

drawn by moving a pencil and the segment 

traverses through the circle. (b): geometrical 

interpretation of discontinuity due to a hole being 

present on the line segment PQ. (c): geometrical 

representation of discontinuity due to a hole being 

present on the boundary of circle. 

One strange thing from Euclid’s ‘Eléments’  that 

mesmerize the mathematicians is- the use of actual 

construction geometry as a device for figures and 

diagrams bearing certain characteristics. Thus, 
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geometric constructions were affected by drawing of 

straight-line segments and circles as per the guidelines 

of postulates 1 to 3 of Euclid’s and the extract of this 

kind of construction was to determine new line 

segments, circles and so on from the points of 

intersections of lines and circles. But, the intersection 

of such line segments and line segments with circles, 

so as to determine new lines and circles gave rise a 

question of existence of intersection points and thus 

the quest for a new kind of existential postulate was 

started.    

Killing  tried to assist the existence of intersection 

points by putting forward two rules(Killing, 1892): 

3.2 Killing’s rules for the existence of intersection 

point: 

Rule-I: Suppose a line belongs completely to a 

geometric figure which is dissected into two parts; 

then, if the line has at least one point in common with 

each part, it must also meet the boundary between the 

parts. 

Rule-II: If a point moves in a figure which is divided 

into two parts, and if in the beginning of motion, it 

belongs to one part, and at the end of the motion, it 

pertains to the other part of figure, then meanwhile the 

motion of point, the point must reach at the boundary 

between the two parts.  

4. Continuum, infinitesimal and continuity in 17th 

& 18th centuries 

Trailing the ideology of Democritus (450 BC), 

Eudoxus (350 BC), Aristotle (384-322 BC), 

Simplicius (490-560 AD) and then Euclid (300 BC), 

17th and 18th century philosophers and 

mathematicians such as, Kepler, Galileo, Newton, 

Marquis De Hôpital, Leibnitz, Euler, Barrow and 

Kant tried to establish a systematical construct of 

relations among continuity, continuum and 

infinitesimal.  

Moreover, especially in 17th century, mathematicians 

coined the following prominent thoughts: 

17th century mathematicians held that-  

▪ Continuous curves are made up of infinitesimal 

straight lines’ and therefore the continua’s 

(which is thought as a unity) constituent parts 

must be continua themselves.’ 

▪ Since entities like points are non-decomposable 

or indivisible, thus, they cannot be the parts of any 

continuum. 

▪  Any number may be supposed as an infinitesimal 

number, if it does not coincide with the number 

zero and if in some sense, it remains smaller than 

any finite number. 

▪  In Newtonian calculus, infinitesimal quantities 

were treated as ‘instrumental’. 

▪ From Leibnitz’s perspective, the infinitesimal 

quantities were supposed to be ‘unassignable 

quantities. 

▪ As per the treatise of Marquis De Hôpital, entitled 

‘Differential Calculus’ published in 1696, it was 

postulated that- “a curved line may be regarded 

as a composition of infinitely tiny straight lines” 

and “one can take any two quantities equal, 

provided they are differ by an infinitely small 

quantity” 

▪ Isaac Barrow (C.1630-1677), an English 

mathematician, while developing method for 

finding tangents realized that- notion of 

infinitesimal is an essential tool for his method 

and thus he introduced two mesmerizing words 

“Linelets” and “Timelets” for infinitesimal, 

which appeared later in his work “Lectiones 

Geometricae” in 1670.     

However, among the 17th century philosophers and 

mathematicians, the British mathematician sir Isaac 

Barrow (1630-1677) has been credited as a pioneer in 

defining the continuous magnitude in a systematic 

way. Barrow begun to establish a reciprocal relation 

between the problem of quadrature and that of finding 

tangents to the curves and he drew the following 

conclusion: 

4.1 Barrow’s conclusion(s) 

Barrow, in his work “Lectiones Geometricae” in 1670 

observed that(J. Bell, 2004)- 

a. If for any curve 𝑦 = 𝜓(𝑥), the quadrature be 

known with the area given by 𝜑(𝑥), then the 

subtangent of the curve 𝑦 = 𝜑(𝑥) can be 

determined by measuring the ratio of its ordinate 

to the ordinate of original curve 𝑦 = 𝜓(𝑥), i.e., 

subtangent of 𝜑(𝑥) =
ordinate of 𝜑(𝑥)

ordinate of 𝜓(𝑥)
. 

b. Because, continuous magnitudes are generated 

due to motion, therefore they essentially be 

dependent on time. 

Sir Isaac Newton (1642-1727) during the plague 

pandemic, deeply deployed the tools (a) and (b) of his 

teacher Barrow, and consequently established his 

work, now popularized as “Calculus of fluxions”. He, 

thus pave the way to a new paradigm of continuity(J. 

L. Bell, 2005b). 

4.2 Isaac Newton’s calculus of fluxions 
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Here are the notions, that Newton apprehended in his 

work- 

1st.  As Newton supposed the infinitesimal quantities 

to be just instrumental in his calculus, he notified 

these instrumentals as “Momentary 

increments”. Probably, such notification was 

because of utilizing kinetic notions in his work.  

2nd. For him the “momentary increment” means an 

instance of time, or a moment of time- of abscissa 

or the area of the curve with the abscissa 

(abscissa itself stands for time in this case)  

3rd. Newton introduced the symbols- 

𝑜 ≝ abscissa, 𝑣 ≝ ordinate, 𝑜𝑣 ≝

area of the curve.  

Probably these symbols infer that, Newton’s supposed 

a curve to be a plot or graph between velocity 

and time.    

4th. Taking into account a moving line or an 

ordinate, as a moment of   area of the curve, 

Newton established a generalized result for the 

reciprocal relation between the differentiation 

and the integration. 

5th. Finally, in his work “Methodus fluxionum”, 

Newton had introduced the variable quantities 

generated due to motion as a “fluent”. He 

evoked the rate at which quantities “fluent” 

were generated, as a “fluxion”.  

6th. The notations, he notified in his calculus were 

denoted by- 

fluxion of the fluent ≝  𝒙̇,moment of fluxion ≝ 𝒙̇𝒐 

In the meanwhile, Gottfried Wilhelm Leibnitz (1646-

1716), a German polymath was intensively working 

on ‘a general law of continuity’ and he was literally 

provoked by the question that- what composes the 

continuum? He cited this problem as “Labyrinth of the 

continuum”.  

4.3 Leibnitz’s monadism and law of continuity(J. 

L. Bell, 2005a)  

G.W. Leibnitz, in his quest for the principle of 

continuity, walked through the problem that- whether 

a continuum can be built from indivisible entities? If 

yes! Then how? In search of answer, he put forwarded 

a new philosophy called “Monadism”, which led him 

to the following conclusions- 

1st. Leibnitz inquired himself that-if every real entity 

is supposed to be either as a ‘unity’ or as a 

‘multiplicity’, and further, if ‘multiplicity’ be 

essentially treated as an accumulation of 

‘unities.’ Then under what characteristics and in 

what category, a geometric continuum (e.g., a 

line, surface or a solid) should be placed?   

2nd. He further argued for example, that-if a line is 

extended, and an extension being categorized as 

recursion, then a line cannot be treated as a true 

‘unity’, as it is divisible into parts. Hence, rather 

a true ‘unity’, a line is true ‘multiplicity’.  

3rd. Leibnitz concluded the 2nd argument under the 

influence of the already established logics that 

state- (a). The only unities of any geometric 

continuum could be points, but points have no 

further divisibility attitude and therefore, points 

are not more than the extremities of the extension 

of line  

(b). Also, according to Aristotle- “no continua can be 

composed of points”     

4th. With the aid of argument 2nd and 3rd, Leibnitz 

came to assert that- “Continua is neither a unity 

nor a multiplicity”, which literally means that, in 

practice, there does not exist anything like real 

continuum, which is either unity or an 

accumulation of unities. 

5th. Eventually, he founded that-space and time, in 

ideal situation can though to be as continuum. 

However, anything which is real (for example 

matter) always reveals the discreteness as being 

composed of substance like units and he notifies 

such simple units as “Monads”    

But what makes Leibnitz enforced to think upon 

infinite numbers? In fact, the answer is hidden in the 

work of Galileo Galilei, who in his ‘Two new 

sciences’ proposed that (Arthur, 2015)- 

a. “The matter is composed of an actually 

infinite number of atoms.” 

b. “And each of the atoms are separated by 

infinitely small voids.” 

Leibnitz followed the idea of Galileo Galilei that ‘in 

the infinite, there is neither greater, nor smaller’ and 

demonstrated this as follows(Leibniz, 2001):  

“Among numbers, there are infinite roots, infinite 

squares, infinite cubes. Furthermore, there are as 

many roots as numbers. And there are as many 

squares as roots. Therefore, there are as many 

squares as numbers.”  

Leibnitz, from the above quoted demonstration 

concluded that- there are as many square numbers as 

there are numbers in the universe, which is 

impossible. Consequently, in the infinite, the whole is 
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greater than the part, which is the affirmation of 

Galileo.   

To validate Galileo assertion that ‘the whole is greater 

than the part’, Leibnitz finally produced a purely 

mathematical version (Arthur, 2015). What he did in 

this mathematical version is: 

a. He drew a symmetrical diagram (see Figure 4a), 

which he called Leibnitz’s hyperbola with 

centre A and vertex B. Then he sat AC = BC = 

a or 1 without loss of generality. 

b. Then he tried to determine the area under this 

symmetrical curve between the line CB & X-

axis 

c. To do so, he used DE = 1/ AD = 1/ (1-y), which 

he expanded in terms of power series as: 𝐷𝐸 =
1

𝐴𝐷
=

1

1−𝑦
= 1 + 𝑦 + 𝑦2 + 𝑦3 +⋯ 

d. Then he calculated the area in question by 

applying the variable line DE to the line AC = 

1, which yield: Area (ACBEM) =  1 +
1

2
+
1

3
+

1

4
+⋯. As per the modern mathematics, 

Leibnitz has integrated the power series as 

∫ (1 + 𝑦 + 𝑦2 +⋯)𝑑𝑦
1

0
 

e. In a similar fashion, he calculated 

Area(𝐶𝐹𝐺𝐿𝐵) = 1 −
1

2
+
1

3
−
1

4
+⋯ 

f. Finally, he subtracted the finite Area (CFGLB) 

from the infinite Area (ACBEM) to get- 

Area (ACBEM) − Area (CFGLB) =

Area (ACBEM) 

g. It was more than enough to demonstrate that 

subtracting an area (i.e., Area CFGBL), which 

is definite and explicitly perceivable, from the 

area under the hyperbola (i.e., Area ACBEM) 

leaves the Area ACBEM intact. Which shows 

that the whole is greater than the part. 

 

Figure 4a: Leibnitz’s Hyperbola 

With this philosophy of “monads”, Leibnitz presented 

one of his best doctrines, now known as ‘principle of 

continuity’. 

4.4 Leibnitz’s principle of continuity(Heath, 1926) 

The mathematician contemporary to Leibnitz 

established some important facts pertinent to the 

tangent to some given curves, and they granted that 

‘one could find a tangent line at every point of a curve 

under consideration’. Basically, they developed a 

geometric construction wherein they assumed that- 

given a curve and a point 𝑃 on the curve, the tangent 

line can be constructed by passing a line through 𝑃 

and another point 𝑄 lying on the curve. Further, any 

point 𝑄 which is differ from 𝑃 will also yield a line, 

because in accordance with the Euclid ’s postulate-I, 

‘Any two points determine a line ’. To obtain a tangent 

line, mathematician followed idea of nearness/ 

closeness as prescribed by Leibniz and they moved 

point 𝑄 close enough/ near enough to 𝑃.  

Such a beautiful construction was later formulated as 

a general principle and now known as Leibniz ’s 

continuity principle: 

Definition-3: Continuity principle-   “ In any 

supposed transition, ending in a terminus, it is 

permissible to institute a general reasoning, in which 

the final terminus may also be included”. 

However, this principle got stuck when few 

counterexamples came into existence in the course of 

study. One of them was as follows: 

 Example 1: Let us consider the function 𝑓(𝑥) = |𝑥|, 

where the symbol |. | stands for absolute value which 

is usually defined as: |𝑥| = 𝑥 if 𝑥 ≥ 0 and |𝑥| = −𝑥 

if 𝑥 < 0. It ’s obvious from the graphical 

representation of this function that the function lies in 

the 1st and 2nd quadrant of the plane. Clearly, for each 

non-negative value of x, the absolute value function 

has a tangent that coincides with 𝑓(𝑥) = 𝑥. However, 

for each negative value of 𝑥, the absolute value 

function has a tangent that coincides with 𝑓(𝑥) = −𝑥. 

Now in view of Leibnitz ’s continuity principle, in the 

process of drawing tangent, it might be possible to 

extend towards the origin and hence the origin should 

be the terminus. However, if we proceed drawing 

tangent from the right of the origin, the tangent at 

origin must coincide to the line 𝑦 = 𝑥, i.e., the 

gradient must be +1. Likewise, if we proceed to draw 

tangent from the left of the origin, the tangent at origin 

must coincide with the line 𝑦 = −𝑥, i.e., the gradient 

must be -1. Therefore, the tangent at origin is 
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impossible to define, because a tangent at some given 

point cannot have two different gradients at the same 

time.    

Apart from the above graphical approach, the same 

conclusion that ‘Leibnitz‘s continuity principle’ 

ceased for the function 𝑓(𝑥) = |𝑥|, can be drawn 

using the simple device of Calculus as follows: 

Example-2: Consider the function 𝑓(𝑥) = |𝑥| and let 

us try to show that Leibnitz ’s continuity principle fails 

to hold, specially at (0, 0). For this, let us determine 

the derivative of given function via implicit 

differentiation. Suppose 
𝑑

𝑑𝑥
(𝑓(𝑥)) =

𝑑

𝑑𝑥
(|𝑥|). 

Making use of chain rule; 
𝑑

𝑑𝑥
(𝑓(𝑥)) =

𝑑𝑓(𝑢)

𝑑𝑢

𝑑𝑢

𝑑𝑥
. 

Where 𝑢 = 𝑥, and 
𝑑

𝑑𝑢
𝑓(𝑢) = 𝑓′(𝑢). Then 

(
𝑑

𝑑𝑥
(𝑥)) 𝑓′(𝑥) =

𝑑

𝑑𝑥
(|𝑥|). Since the derivative of 𝑥 is 

1, therefore 𝑓′(𝑥) =
𝑑

𝑑𝑥
(|𝑥|). Again, in implementing 

chain rule: 
𝑑

𝑑𝑥
(|𝑥|) =

𝑑|𝑢|

𝑑𝑢
.
𝑑𝑢

𝑑𝑥
, where 𝑢 = 𝑥 & 

𝑑|𝑢|

𝑑𝑥
=

𝑢

|𝑢|
. Thus, 

𝑓′(𝑥) =
𝑥((𝑑/𝑑𝑥)(𝑥))

|𝑥|
, and again derivative of 𝑥 , with 

respect to 𝑥 becomes 1, so we finally have: 𝑓′(𝑥) =
𝑥

|𝑥|
, which yields +1, when 𝑥 ≥ 0 and -1 when 𝑥 < 0 

 
Figure (4b): The gradient to the curve in the first 

quadrant of the plane is +1, whereas that of the 

curve in second quadrant is -1. This holds true to 

each point of either of the curves. In view of 

Leibnitz’s principle of continuity, it is observed 

that derivative at origin does not exist. 

A plenty of such curves having corners or cusps, were 

soon encountered by mathematicians and they 

believed that points where derivative did not exist 

were exceptional. Mathematicians also found hard to 

imagine the curves which entirely consist of cusps or 

sharp corners. To imagine and draw jagged curves, 

prior to calculus it would be heavily required to 

introduce Topological notions.    

Let us switch back to the time, when Leibnitz 

exploited his continuity principle in developing his 

infinitesimal calculus. Leibnitz wrote essay “Nova 

Methodus” in 1684 which was followed by another 

essay “De Geometri Recondita” in 1686, wherein he 

formally introduced the notion of differential and 

integral calculi. In these two essays, he included the 

following: 

I. He supposed a curve characterized by two 

correlated variables, namely 𝑥 & 𝑦 

II. Then, he notified symbols 𝑑𝑥 & 𝑑𝑦 to 

formulate the infinitesimal differences or 

the differentials between variables  𝑥 & 𝑦. 

III. Further, he notified a symbol 
𝑑𝑥

𝑑𝑦
 for the ratio 

of the above two differences and he called 

this as ‘slope of the curve at a point.’  

IV. Though, infinitesimal differences for 

Leibnitz were unassignable quantities, he in 

1684 proposed the following rules without 

demonstration: 

• 𝑑𝛼 = 0 

• 𝑑(𝛼𝑥) = 𝛼𝑑𝑥 

• 𝑑(𝑥 + 𝑦 − 𝑧) = 𝑑𝑥 + 𝑑𝑦 − 𝑑𝑧 

• 𝑑(𝑥𝑦) = 𝑥𝑑𝑦 + 𝑦𝑑𝑥 

• 𝑑 (
𝑥

𝑦
) =

𝑦𝑑𝑥−𝑥𝑑𝑦

𝑦2
 

• 𝑑(𝑥𝑛) = 𝑝𝑥𝑝−1𝑑𝑥 

V. When, Leibnitz felt the essential admittance 

of incomparably tiny quantities, which were 

seemingly small than the ordinary numbers-

he argued that, law of continuity governs the 

incomparably small quantities in the similar 

fashion as it governs the ordinary numbers.  

VI. Ultimately the argument (V), forced him to 

involve the infinitesimal quantities with 

finite quantities. But he always treated the 

infinitesimal quantities as if they were zero. 

Thus, for instance, Leibnitz treated the 

quantity 𝑥 + 𝑑𝑥 same as 𝑥. Such a 

treatment, he followed was based on the 

notion that ‘differentials cannot be 

stagnant, rather they should be variables 

and should be diminishing continuously 

until arrived at zero’.  

VII. He developed his calculus with the notions 

that- 
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• Differentials or infinitesimal are 

neither something nor equal to the 

absolute zero. 

• 𝑑𝑥 ≈ 0, by which he meant that 

differentials are indistinguishable 

from absolute zero 

• Neither 𝑑𝑥 = 0, nor 𝑑𝑥 ≠ 0 

• 𝑑𝑥2 = 0 

• 𝑑𝑥 → 0, by which he meant that the 

differential is vanishingly small. 

4.5 Euler’s refutation to Leibnitz’s monadism 

A Swiss polymath Leonhard Euler (1707-1783), 

while practicing calculus straight away refuted the 

Leibnitz’s monadism by involving the Cartesian 

principle in his study.  

As its well known that- the theory of monads or 

simple things of which the body is composed, relies 

upon two general features of the bodies, namely; 

‘extent & the moving forces’ (Haude & Spener, 1746). 

Euler argued that, such a theory can be true if the 

arguments leading to it are valid. With this quest, 

Euler has set up deepen exploration towards the 

Leibnitz’s theory to arrive at the following concluding 

remarks: 

a. Regarding the first property of monads, i.e., 

‘extent’, Euler said that- it is undoubtedly true 

that all bodies are composed of parts and that 

these ever-smaller parts can be distinguished. 

Because, if through decomposition, we 

eventually reach at a particle so small that with 

naked eyes the particle is observed to have no 

further parts; then it can further be examined 

with a magnifying glass to discover that the 

particle still has a large number of real parts. 

b. Euler questioned that- whether this long-lasting 

divisibility can be continued infinitely far? Or 

whether this decomposition process reaches at 

some limit, such that there remain particles with 

no size? Indeed, these questions are still a matter 

of debate.   

c. Regarding the second property of monads, i.e., 

‘moving forces’, Euler proclaimed that- since 

every-body have such a force to remain in its 

natural state, the cause of this force must be 

found in the essence of the body. Thus, it can be 

rightly concluded that every-body is endowed 

with a force to remain in its present state. 

d. Euler submitted that- the force which is 

responsible to retain the body in its current state 

is called ‘Vis inertiae’.  

e. He further claimed that in the theory of 

movement, the force ‘Vis inertiae’ is generally a 

property of the body without which a body 

ceased to be a body.   

f. Thus, Euler gave the reason ‘inertia’ for the 

change in the world, while dealing with the 

query that ‘Why there are continuous changes in 

the world?’  

g. Euler further refuted the Leibnitz’s notion of 

infinite divisibility by mentioning that- ‘Mr. 

Leibnitz appears to admit infinite divisibility by 

maintaining that infinitely many monads shall be 

required to represent the smallest body’. 

However, this statement contradicts itself, as this 

one is equivalent to saying that- ‘bodies can 

through no division, however far this might be 

continued, be subdivided into such simple 

things, through which in fact the existence of 

simple things is denied.’ 

h. Euler also argued that- if we assume that a body 

is composed of simple things, then we should 

acknowledge that the number of these simple 

things is definite. But if one takes this number to 

be infinite, it can be no more definite and 

therefore infinitely huge would mean a 

magnitude beyond understanding.  

i. Thus, Euler summed up the crucial difference 

between his own and Leibnitz’s definitions of 

infinitely small quantities in the following way 

(Knobloch,2008): 

(a).  Suppose 𝑖 be an infinitely small quantity, 𝑔𝑞 

be a given quantity and 𝑎𝑞 be an assignable 

quantity, then:   

(b). Leibnitz- for all 𝑔𝑞 > 0, there is an 𝑖(𝑔𝑞) >

0, so that 𝑖(𝑔𝑞) < 𝑔𝑞
 
⇒ 𝑖(𝑔𝑞) is a variable 

quantity. 

(c). Euler- for all 𝑖 and for all 𝑎𝑞 > 0: 𝑖 <

𝑎𝑞 ,
 
⇒𝑖 = 0       

Apart from the above, while refuting the Leibnitz’s 

and Wolff’s theory of monads or simple things 

(Watkins, 2006), Euler has made the following 

observations against the Leibnitz’s 

monadism(Berkeley, n.d.) (Berkeley, 1754): 
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1st.  He held the Cartesian doctrine – “the universe if 

filled with a continuous ethereal fluid” 

2nd. Universe follows the wave theory of light 

rather that corpuscular theory proposed by 

Newton. 

3rd. The ‘infinitesimal’ of Leibnitz was refuted by the 

logic that- any quantity which is less than the 

magnitude assignable to it, cannot be equal to 

zero. 

4th. Euler asserted that the differentials must be zero 

and thus the quotient 
𝑑𝑦

𝑑𝑥
=
0

0
, since for any 

number 𝛼, 𝛼 × 0 = 0. Further, Euler argued 

that the quotient 
0

0
 should stand for some 

number(Bishop, 1967). 

5th. For natural phenomenon, Euler justified that- a 

‘minute’ like ‘infinitesimal’ should be 

considered, provided this minute like quantity 

must be a concrete element of the continuum. 

6th. The minute like element of the continuum should 

not be treated as an atom or monad 

7th. Finally, the minute like element of the continuum 

should essentially be divisible. 

4.6 Kantian philosophy of continuity 

Unlike the mathematical continuity, Immanual Kant 

(a prominent 18th century German Philosopher) 

developed the concept of continuity which was 

broadly philosophical and was meant to address the 

nature of our everyday experience in space-time. 

Because Kant’s continuity is keenly associated with 

his philosophy of space and time and is applicable to 

the structure of human perception and because the 

modern sciences like topology, quantum theories etc. 

are also dealing with the structural aspect of space-

time, it is worth quoting Kant to excavate some 

similarities among various notions of continuity.        

Immanuel Kant (1724-1804), in his philosophical 

stream ‘transcendental idealism’, gave place to the 

idea of continuity. As per his ideology, the following 

logics came into play: 

First. There are two aspects of reality- one is 

“phenomenal realm” and the other is 

“noumenal realm”.   

Second. By “phenomenal realm” he meant-things 

those consist of appearance.  

Third. The phenomenal realm is also known as 

the realm of appearance refer to the world 

as we experience it through our senses & 

mental faculties.  

Fourth. This realm includes everything we 

perceive, observe & comprehend through 

our empirical experience.  

Fifth. Thus, as per the Kant’s critique of pure 

reasoning, phenomenal realm is shaped & 

structured by our cognitive faculties.  

Sixth. He, for example argued that- though ‘the 

space and time are shaped and structured 

by our cognitive faculties’ but they are not 

the inherent properties of the external 

world but rather subjective forms that 

shape our sensory experience and make 

coherent perception possible.  

Seventh. Kant believed that there is a framework 

which he called ‘spatiotemporal 

extension’, through which humans 

perceive & understand reality in a 

perpetual manner.  

Eighth. Thus, the things like magnitude which is 

identified by its appearance can be 

spatiotemporally extended to infinity and 

so the spatiotemporal extension of things 

is continuous (viz. space and time).  

Ninth. However, in the phenomenal realm, our 

knowledge remains limited as we can 

understand & reason about the objects & 

events as they appear in space-time, but 

cannot know things independent of our 

cognitive processes.     

Tenth. By “noumenal realm”- he meant things 

consisting of understanding to which no 

objective experience can ever be receive.  

Eleventh. He calls this as “things in themselves”.  

Twelfth. He assumed this realm to be a hypothetical 

realm of existence that lies beyond human 

perception & understanding.  

Thirteenth. This realm represents things as they are 

independent of our cognitive faculties or 

any empirical experience. 

Fourteenth. Kant speculated that the noumenal 

realm contains the ultimate reality of 

objects and events and thus examples of 

his realm are often elusive, as we cannot 

directly perceive them.    

If we look at the Kantian transcendental dialectic, we 

can find the following subtle assertions that Kant 

made in favour of his continuity principles (Connell, 

2022): 
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1st. Kant has coined the terms ‘Quantum 

Continuum’ & ‘Quantum Discretum’ 

2nd. Quantum continuum refers to as a whole that is 

infinitely divisible in virtue of its occupying 

space. 

3rd. Quantum Discretum, on the other hand, is 

something whose whole has already determined 

and articulated parts. 

4th. Kantian definition of quantum continuum 

implies that continuity rests on the ability to 

divide infinitely, without arriving at the 

smallest entity, while the process of division 

ensures mereological harmony.   

5th. Kant in his notion of antithesis has shown that- 

there are no simple parts in the antithesis. This 

claim holds, because everything occupies space 

and since space is not composed of simple parts, 

everything observed in the space is itself a 

composite. 

6th. In a different way, we from the Kantian 5th 

argument, can derive that simple parts are not 

the constituent of space, but the space always 

has a manifold of elements external to it. That 

is to say space is not composed of simple parts, 

but rather space is made up of space.  

7th. Consequently, everything in space has a 

mereological structure that mirrors the structure 

of space and vice-versa. 

8th. Kant while dealing with the definition of 

continuity revealed that one can perform 

infinite division or decomposition operations, if 

there is a whole with no simple parts.   

9th. Kant further asserted that- the magnitude of 

continuous space and time can also be viewed 

as ‘flowing’. This notion of ‘flowing 

magnitude’ was also considered by Newton to 

irradicate difficulties arise due to Leibnitz’s 

monadism.  

Besides the above, Kant has proposed the law of 

continuity of alterations. This law includes two 

famous continuity principles called law of extensive 

continuity and law of intensive continuity. Kant has 

dealt with these laws by following Leibnitz and 

suggested the following (Jankowiak, 2020):  

One. Law of continuity of alteration- This law 

refers to as a metaphysical principle and this 

states that ‘whenever at any instant an object 

changes its state from one to another, it passes 

through a continuum of infinitely many 

intermediate states along the way, i.e., 

quantum continuum’.  

Two. Kant followed Leibnitz’s general law of 

continuity that ‘nature makes no leaps’ to 

deal with his metaphysics and claimed that 

there are as many particular laws of 

continuity as there are sorts of leaps that 

nature refrains to make.  

Three. Law of continuity of extensive magnitude: 

Kant proclaimed that- ‘Extensive magnitude 

is a quantity in which a part is able to express 

the whole’.  

Four. He took examples of space and time as 

extensive magnitude and asserted that space 

and time are continuous as no part of either of 

these extensive magnitudes is a smallest unit.  

Five. Kant further argued that- extensive 

magnitudes as a whole are continuous 

themselves, because these wholes can be 

divided into arbitrarily small parts. 

Six. Law of continuity of intensive magnitude: 

Kant argued that- an intensive magnitude is a 

quantity ‘which can only be caught as a unity 

and whose multiplicity can only be 

represented by approximating it negation 

equal to zero’. Thus, Kant stated the law of 

continuity of intensive magnitude as- 

‘between any two degrees of intensity, there 

will always be infinitely many more’. And 

therefore, Kant defined the intensive 

magnitudes as continuous.  

Seven.  Kant also claimed that- ‘all realities are 

intensive magnitudes’ and listed fundamental 

physical properties e.g., weight, volume, 

temperature etc. as realities, fundamental 

forces that constitute material and 

psychological entities such as sensation are 

all realities.        

5. Continuum, infinitesimal & continuity in 19th 

century 

Almost the entire period of 19th century can be 

admitted as a golden period, during which the base of 

entire modern calculus was fostered. Seemingly well-

grounded logics to define the concepts of continuity, 

continuum and infinitesimal have been proffered by 

mathematicians and philosophers of the time. In this 

section, we limit our focus on fewer, but historically 

prominent mathematicians and physicist, due to 

whose work, modern mathematical community 
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became aware of grasping the Hausdorff topological 

treatment to continuity. 

5.1 Means of continuity for Bernhard Bolzano 

Historically, Bernhard Bolzano (1781-1848) an 

Austrian-Hungarian philosopher and mathematician 

has been crowned as a pioneer of continuous function. 

Indeed, he is the sole fellow, who posed ‘continuity  ’

in the mathematical world of his time. Seemingly, he 

was interested in the literal meaning of  ‘continuity ’. 

Though the geometric sketch approach used in 

‘Elementary principle of continuity  ’appealed a lot to 

Leibnitz and Newton in many Calculus discourses, 

but the ‘Pencil-definition’-  “ A function from 𝑫 ⊂ 𝑹 

to 𝑹” is continuous if we can draw its curve without 

lifting our pencil from the paper’ did not always find 

to be relevant in many ‘continuity determination’ 

cases. That is why Bolzano’s continuity depended 

upon the notion of “closeness”. With this notion, he 

made the following arguments- 

First. In contrast to Pencil-definition, continuity 

can be determined by taking care of 

‘closeness’ of function.  

Second. Closeness of the function has to be taken in 

the sense that- tiny modification to the 

domain of function led tiny changes in co-

domain. 

Third. In his popular work “Rein analytiċhe 

Beweis” in 1817, he introduced the 

continuity of a real valued function 𝑓(𝑥) at 

some point 𝑥 as the difference 𝑓(𝑥 + 𝑡) −

𝑓(𝑥) which can be treated smaller than a pre-

assumed quantity 𝛼, provided the quantity 𝑡 

is taken to be small enough.   

Fourth. The third argument of Bolzano has been 

reinterpreted by many mathematicians and it 

has now been accepted by the community as 

Bolzano’s definition of continuity.  

Bolzano’s Definition-4: “If 𝑓 is continuous, then for 

each 𝑥0 in the domain 𝐷 ⊂ 𝑅” and for each positive 

number 𝜖, there exists a positive number 𝛿, such that 

whenever the distance from 𝑥 to 𝑥0 remains less than 

𝛿, the distance from 𝑓(𝑥0) to 𝑓(𝑥) will be less than 

𝜖”. 

5.2 Cauchy’s perspective of continuity 

Augustine Louis Cauchy’s (1789-1857) remarkable 

contribution in introducing the fundamental role of 

infinitely tiny quantities in the development of 

infinitesimal calculus has been a mile stone in the 

history of mathematics. The concept of infinitely tiny 

quantity was introduced by himself in his text book 

‘Cours d’ analyse-1821’. Cauchy, in this text book, 

has asserted the following (Laugwitz, 1987): 

One. The infinitely tiny quantities should be 

denoted by variables whose limit shall 

assumed to be zero. 

Two. These infinitely tiny quantities can be 

represented by sequences that converge to 

zero. 

Three.  These infinitely tiny quantities can also be 

represented by functions, which vanish at 

zero 

The above three assertion led Cauchy to hypothesize 

the importance of infinitely small quantities for the 

treatment of continuous functions. However, Cauchy 

in 1821 and then in 1833 have introduced two 

controversial theorems pertinent to continuity, which 

are as follows: 

a. Theorem 1 (Year 1821): “If a function of 

several variable is continuous in each one 

separately, it is a continuous function of all the 

variables”. 

b. Theorem 2 (Year 1833): “The sum 𝑆(𝑥) of a 

convergent series of continuous functions 

𝑈𝑛(𝑥) is itself a continuous function”  

c. Both these theorems seem to be incorrect when 

interpreted under the conceptual framework of 

analysis. However, both the theorems become 

correct when treated under modern theories of 

infinitesimal.  

d. Cauchy summarize the outcome of these 

theorems as- ‘A function is continuous if an 

infinitesimal change of variable produces an 

infinitesimal change of the function itself. 

However, Cauchy’s purely mathematical 

definition of continuous function is mentioned 

in the subsequent paragraph.    

Cauchy defined continuous function in a more 

concrete fashion than his predecessor by involving the 

‘infinitesimal’ in a more robust sense. In his famous 

manuscript “Cours d’ analyse”, he contended the 

following(Bolzano, 2012)- 

First. Cauchy, in defining the continuity of a 

function, involved ‘infinitesimal’ as a 

variable quantity. 

Second. The ‘infinitesimal’ notified as a variable 

quantity was treated by him as- ‘the quantity 

whose value decreased indefinitely’ 
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Third. The ‘indefinite continuous decrement in the 

value of variable’ must be such that, the 

variable’s value ultimately converge to zero. 

Fourth. Finally, with these presumptions, a 

definition of continuity came into play, 

which is known as Cauchy’s continuity 

principle- 

Definition-5: “The continuity of any function 𝑓(𝑥) in 

some neighbourhood of a value 𝑎 involves the 

condition that- 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)”  

5.3 Weierstrass approach to continuity  

Karl Weierstrass (1815-97) has carried forward the 

ideology of Bolzano, i.e., ‘continuity in terms of 

closeness’ and provided the following robust 

arguments- 

1st. Intuition of continuous motion in the universe 

can be well understood through arithmetical 

approach. 

2nd. Thus, rather thinking of Infinitesimal as 

‘variable quantity’, we can take it as a ‘static 

quantity’. 

3rd. Because, a variable is simply a symbol notified 

for an arbitrary member of a given set of 

numbers. 

4th. A continuous variable should be like a symbol, 

whose corresponding set 𝐺 should have the 

property that any interval 𝐼 around any element 

𝑔 ∈ 𝐺 contains elements of 𝐺, other than 𝑔.  

5th. With these arguments, Weierstrass succeeded 

in producing a fantastic definition of continuity, 

which in modern era known as epsilon-delta 

criterion of continuity(Boyer, 1940) (Benjamin, 

1968). This criterion is being discussed here as 

definition-6 and is schematically represented as 

Figure 5. 

Weierstrass 𝛜 − 𝛅 criterion of continuity 

Definition- 6: “Let 𝐷 ⊂ 𝑅 and let 𝑓: 𝐷 → 𝑅. Then 𝑓 

is continuous at a point 𝑥0 ∈ 𝐷 if for every positive 

real number 𝜖, there exists a positive real number 𝛿 , 

such that: 

|𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖, whenever |𝑥 − 𝑥0| < 𝛿.” 

The given function is then said to be continuous on 𝐷, 

if it is continuous at every point of 𝐷.  

This definition is very subtle as it makes the graph of 

the function mathematically rigorous. A better way to 

think of it is- think it in terms of “closeness”.  

A continuous function preserves closeness, in the 

sense that points which are close to 𝑥0  in the domain 

of continuous function are sent to the points 𝑓(𝑥0) in 

the range. The idea of closeness is made precise by 

asking and answering a question, namely; how close 

to 𝑥0 is close enough for points 𝑥 to be, so that their 

images 𝑓(𝑥) are within a prescribed distance (within 

𝜖) of 𝑓(𝑥0)? The fact that question can be answered 

(i.e., an 𝜖 can be shown to exist), no matter how small 

the prescribed distance 𝜖 is, means that the function is 

continuous at the point 𝑥0- it preserves closeness. 

Here are few examples, mentioned as a witness for 

Weierstrass approach.   

 
Figure 5: 𝛜 − 𝛅 criterion of continuity: If 𝒙𝟎 is 

any point within the interval of length 𝟐𝛅 with 

centre 𝒙𝟎 on X-axis, then 𝒇(𝒙𝟎) will lie within the 

interval of length 𝟐𝛜 centred at 𝒇(𝒙𝟎). Thus, if for 

every value of 𝛜, there exists a 𝛅 in such a way 

that this condition holds, then the function 𝒇(𝒙) 

will be called continuous at 𝒙𝟎 

Example 3: Consider the function from 𝑅 to 𝑅  given 

by 𝑓(𝑥) = {
1 𝑖𝑓  𝑥 ≥  2
−1 𝑖𝑓 𝑥 < 2

. This function is clearly not 

continuous at 𝑥 = 2 

 
Figure 6-Graph of the function 𝒇(𝒙) showing 

discontinuity at 𝒙 = 𝟐 
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The Figure 6 exposing that this function is not 

continuous at 𝑥 = 2, which means, there are points 

that are close to  𝑥 = 2 that are not sent to points that 

are close to 𝑓(2) = 1. Thus, this function is not 

continuous at 𝑥 = 2, because it fails to preserve 

‘closeness ’at 𝑥 = 2. 

To pursue the ‘closeness  ’idea a little further, consider 

the function defined by: 

𝑔(𝑥) =
1

𝑥
,if 𝑥 > 0. 

This function is continuous on its domain (zero is not 

in the domain!), its graph looks like (Figure 7): 

 
Figure 7: the graph of a function g(x)=1/x, x>0, 

revealing its continuity at every point of its 

domain 

Since the function given above is continuous, this 

function must preserve the closeness. But, “close” is 

a relative term, for example if 𝑥 = 1/10 then 𝑔(𝑥) =

10; the points in the interval (1/11,1/9) are pretty 

close to 𝑥 = 1/10, but function g spreads these points 

over the interval (9,11) on y-axis and there are the 

points in (9,11) almost a whole unit away from 

𝑔(1/10)= 10.  

As another example, the points 𝑥 = 0.004 and 𝑥 =

0.005 might said to be very close together (the 

distance between them is only 0.001 unit) but 

𝑔(0.004) = 250 and 𝑔(0.005) = 200, so the images 

under g of these two nearly indistinguishable points 

are 50 units apart! 

Similarly, the points 𝑥 = 10−6 and 𝑥 = 10−7 are so 

closed together, that you need a powerful microscope 

to tell them apart. But their images under this 

continuous function are 9,000,000 units apart! 

But this function g is continuous under the provision 

that 𝑥 > 0. 

5.4 Dedekind’s postulate for continuity principle  

Having inspired from the Weierstrass ideology, 

Richard Dedekind (1831-1916) has further nourished 

and formulated continuity of functions by involving 

reals number system therein.   Before going through 

the precise definition of continuity proposed by 

Dedekind, let us discuss what conceptions he made to 

arrive to his continuity definition- 

1st.  The catalyst for Dedekind’s notion of 

continuity was a query that argues- what is 

that, which discriminates discrete domains 

from continuous one?  

2nd. In this quest, he found that Weierstrass 

arithmetical approach could be a great tool to 

attack on continuity. 

3rd. While following arithmetical approach, he 

involved the set of real numbers in his study. 

4th. Involvement of real numbers led him to 

recognize the ‘density property’ possessed by 

the ordered sets of rational numbers. 

5th. Further, he recognized that the property of 

density of rational numbers is inadequate to 

confirm the continuity of any function or 

entity.       

6th. In his famous manuscript ‘continuity & 

irrational numbers’ published in (1872), he 

mentioned that- it is impossible to associate 

rational numbers to each point of a straight 

line. Because there are uncountably many 

points on the straight line, so rational numbers 

cannot supply the complete association to the 

points of straight line. 

7th. Thus, it seems that a kind of discontinuity, 

incompleteness and separation exist in the set 

of rational numbers. Unlike the set of rational 

numbers, there exists continuity, completeness 

and inseparability in straight lines. Dedekind, 

found that such a situation is beyond proof and 

therefore can be ascribed as axiom. 

With these conceptions, Dedekind has delineated the 

‘Principle of Continuity  ’with special reference to his 

postulate which is as follows: 

Dedekind’s postulate that assists the consistency of 

principle of continuity was based on the following 

popular proposition: 

Proposition-1: If a straight-line segment  𝐴𝐵(say) is 

divided into two parts such that: 



Sandeep Kumar, Int. J. Sci. R. Tech., 2025 2(1), 181-204 |Review 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              195 | P a g e  

1. Every point of the segment 𝐴𝐵 belongs to either of 

the parts 

2. The terminus or extremity A pertains to the first 

part and B belongs to the second part 

3. And any point whatever of the 1st part precedes any 

point whatever of the 2nd part in the order 𝐴𝐵 of the 

segment, 

There exists a point C of the segment AB (which may 

belong to either one or to the other), such that every 

point of AB that precedes C belong to the first part, 

and every point of AB that follows C belongs to second 

part in the division originally assumed.  

The original postulate that Dedekind proposed have 

the following form(Euclid, 1956) (Heath, 1926): 

Dedekind’s Postulate-1:  “If all points of a straight 

line fall into two classes, such that every point of the 

first class lies to the left of every point of second class, 

there exists one and only one point which produces 

this division of all the points into two classes, and the 

division of straight line into two parts”  

To elaborate Dedekind’s axiom as delineated above, 

consider the figure-8 and suppose that: 

There is a set {𝑙} of all points of a line L. Further, let 

this set be the union of two mutually disjoint non-void 

sets say 𝐺 and 𝐻, i.e., {𝑙} = 𝐺 ∪ 𝐻, such that no points 

of either subset are between two points of the other. 

Then there must exist a unique point say 𝑂 on the line 

L, such that one of the subsets is equal to the ray of L 

with vertex 𝑂 and other subset is equal to the 

complement.  

 
Figure 8: A line L={𝒍} which in accordance with 

Dedekind ’s axiom is the union of two non-void 

mutually disjoint sets namely G and H such that 

G= ray of L with vertex O and H=complement of 

ray of L with vertex O. 

Actually, Dedekind’s axiom is the converse of the 

famous line separation property which states that:  

Line Separation Property-1: “Any point O on L 

separates all the other points on L into two portions; 

one is the set contains all the points those lie on the 

left of O, and other portion is the set contains all those 

points that lie to the right of O. Also, L is the union of 

two rays G and H emerging from O”. 

However, Dedekind’s axiom in contrast to line 

separation property can be briefly states as: 

Dedekind’s Postulate-2: “Conversely, any 

separation of point on L into left and right portions is 

produced by a unique point O. A pair of subsets G and 

H with features as delineated in Dedekind ’s axiom is 

called a Dedekind Cut of the line L” 

This postulate can be symbolized as Dedekind’s 

axiom of continuity in the following way: 

Dedekind’s continuity axiom-1: Given any 

Dedekind cut (𝛴1, 𝛴2) of a line 𝑙, ∃ a unique point 𝑃 

on 𝑙 and an ordering of 𝑙 such that 𝛴1 = (−∞,𝑃] & 

𝛴2 = (𝑃,∞) or 𝛴1 = (−∞,𝑃) & 𝛴2 = [𝑃,∞). 

Here, by Dedekind cut, we mean the cuts as described 

in Hilbert’s axiom-which axiomatize that: 

Hilbert Axiom-2: “Let 𝑙 be a line and let 𝛴1, 𝛴2 ⊆ 𝑙, 

we say that (𝛴1, 𝛴2) is a Dedekind cut of 𝑙, if 𝛴1, 𝛴2 

are two nonempty convex subsets of 𝑙, such that- 𝑙 =

𝛴1 ∪ 𝛴2 & 𝛴1 ∩ 𝛴2 = 𝜙 ” 

The motive of Dedekind ’s axiom was to justify the 

continuum hypothesis that could ultimately led the 

avenue of continuity.  

Finally, this became true when Dedekind’s axiom 

ensured that a line L is not simply an aggregation of 

points, but a rather superior structure called 

‘continuum’. In addition to this, Dedekind through 

his axiom revealed that- 

• ‘A line L has no holes in it ’.  

• Of course, without Dedekind’s axiom, it would 

be a tedious situation to any mathematician to 

think about the existence of π, the exponential 

constant 𝑒 and the divine ratio ϕ etcetera.  

• Apart from this, Dedekind’s axiom helped in 

introducing rectangular coordinate system in the 

plane and doing geometry analytically.   

5.5 Cantor’s perspective to continuity 

George Cantor focused on Leibnitz’s confirmation to 

the actual infinite, as Cantor found that this 

confirmation can built a solid base for his theory of 

transfinite numbers. Actually, Cantor was agitating 

with the Aristotelian orthodoxy in the philosophy of 

mathematics. Thereby, a claim of Leibnitz that- ‘there 

are actually infinitely many created substances 

(monads)’ became a strong support to Cantor to 

defend his theory of transfinite in contrast to 

Aristotelian argument that- ‘infinity can exist only 

potentially’. With the aid of Leibnitz’s arguments, 

Cantor designed his theory of transfinite numbers by 

proposing that-‘if there are actually infinitely many 

creatures, then there must be a corresponding infinite 

number of them’ (Arthur, 2015). Cantor by finally 

announcing himself a follower of ‘Organic 

Philosophy’ of Leibnitz held that- 
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1st. To satisfactorily describe the nature, one need 

to theorize the ultimately simple entity of matter 

2nd. These ultimately simple entities must be infinite 

in numbers 

3rd. As per the Leibnitz’s theory of monadism, these 

ultimately simple entities shall be called 

monads or unities. 

4th. There can be two different types of matters 

interacting with each other, which we call (1) 

Corporeal matter (2) Aethereal matter 

5th. With these two different classes of matter, one 

can frame the hypotheses of the powers, namely 

‘power of corporeal monads and the ‘power of 

aethereal monads’ 

6th. Corporeal monads as the discrete unities, are 

equinumerous with the natural numbers and 

thus have a cardinality or power 𝜒0, where 𝜒0 

is the first transfinite cardinal number. 

7th. The aether, which is supposed to be continuous 

is composed of aethereal monads is 

equinumerous to the points on a line and thus 

equal to 𝜒1, the second transfinite cardinal 

number. This second cardinal number has been 

assumed to be the power of continuum.           

It will not be prejudice to say that George Cantor 

(1845-1918), the German mathematician was the 

most visionary Arithmetizer among those 

contemporary to him.  A sheer volume of his work on 

the classification of continuum in terms of infinite sets 

led him producing the theory of transfinite numbers. 

Cantor’s arithmetization of continuum had the 

following consequences- 

First.  An infinite point set is that-which can be put 

in an 1-1 correspondence with a proper 

subset of itself. 

Second.  Geometrically, a set of points of any pair of 

straight lines (though one of them is infinite 

in length) can be placed into one-one 

correspondence. 

Third. Prior to Cantor’s ingenious method of 1-1 

correspondence, it was recognized that- 

infinite set of points have no well-defined 

size. 

Fourth. But, Cantor’s approach of taking infinite 

point sets on a linear continuum equipped 

with a domain of numbers opened the doors 

for size comparison of infinite sets in a 

definite manner. 

Fifth. Cantor, then describe an n-dimensional 

arithmetical space 𝑆𝑛 as a set of all n-tuples 

of real numbers (𝑟1, 𝑟2, … , 𝑟𝑛). Further, he 

promoted arithmetical point sets in 

arithmetical space 𝑆𝑛 as- “an accumulation of 

elements of the elements of space” 

Sixth. In order to enrich the definition of continuum, 

Cantor took aids of perfect sets and derived or 

derivative sets and thus held that- 

“Continuum is a perfect connected set”. 

Seventh. While involving real number system, 

Cantor defined that- “The continuum of real 

numbers cannot be into the 1-1 

correspondence with the set of real numbers” 

and alternatively he stated that- “infinite sets 

come in different sizes”. 

Eighth. With the assistance of first and second 

arguments of Cantor, he has shown that- there 

exists a 1-1 map between the point of unit 

interval and the points of unit cube. He further 

disclosed that-there exists a 1-1 

correspondence between the points of unit 

interval and the points of unit hypercube (a 

cube in n-dimensional space such that n>3). 

Ninth. He finally wrote a letter to his friend 

Dedekind and there he said- “I see it, but I 

don’t believe it”. In response to this, 

Dedekind wrote- “Don’t worry, your 

correspondence is almost everywhere 

discontinuous” 

5.6 Continuity in view of Boltzmann & 

Poincaré(van Strien, 2015) 

Both Boltzmann and Poincaré admitted that, to adopt 

the applicability of continuity in Physics, there should 

be a strong base of empirical approach for the 

fundamental axioms of Mathematics. They ultimately 

argued that- in order to determine the status of 

differential equations in Physics, one needs to have a 

clearcut justification for mathematical continuity 

conditions. In search of justification of the 

applicability of mathematical continuity in Physics, 

they found that their notion of continuity & 

discreteness in nature is swinging in between the 

Kantian philosophy and the Leibnitz’s monadism and 

ultimately, they arrived at contrary to each other. The 

arguments they posed are as follows: 

1st. Poincaré emphasized that- Physicist should 

rely on the continuous representation of 

nature and therefore differential equation can 
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be the best tools to aid the study of all the 

physical phenomena, as during that time it 

was assumed that the fundamental laws of 

Physics can be directly interpreted via 

differential equations.  

2nd. Contrary to Poincaré, Boltzmann argued that 

Physicist must adopt the notion of 

discreteness of nature.  

3rd. But, during 19th century, the differential 

calculus was robustly developed with a 

strictly mathematically (without empirical) 

leveraged continuity principle. 

4th. Therefore around 1900, both the Physicists 

submitted that- the axioms of mathematical 

continuity are not favourable with the 

Physically described phenomenon and thus 

the applicability of differential calculus in 

physics is problematic until we find a proper 

empirical base to it.   

5th. However, in respect of continuity principles, 

both the physicists diverged as follows: 

Poincaré: the continuity principles are 

necessary and therefore physicist should 

work with continuous representation of 

nature, so that fundamental laws of calculus 

could be easily applied to the physical 

phenomenon. 

Boltzmann: emphasized that continuity 

principles are problematic, hence we should 

go with discrete behaviour of nature, though 

if required, we can use continuous models as 

approximations.    

6th. The diverged opinions of Poincaré & 

Boltzmann led them to two distinct continuity 

notions of differential calculus: 

(a). Continuity of possible values: This notion 

requires a variable that ranges over certain 

continuous values corresponding to the real 

numbers.  

(b). Continuity of change: This idea requires a 

relation between the variable which can be 

represented as a continuous & differentiable 

function.  

7th. Boltzmann did not settle down with the idea 

of continuity of possible values as he was still 

relying on discreteness of nature. But, 

Poincaré agreed upon this notion by arguing 

that- ‘variables in physics can range over 

continuous values.’ Poincaré further argued 

that- if we suppose that the physical quantities 

range over any continuous values, and if these 

quantities are connected by relations which 

are usually differentiable function, then we 

can represent the fundamental laws of physics 

in terms of differential equations.  

8th. Besides the above, Poincaré claimed that 

determinism in physics can be achieved 

through the applicability of differential 

equation. Because, such equations under 

certain initial conditions produce unique 

solutions.  

9th. Regarding physical continuum, Poincaré 

claimed that it is fundamentally different 

from the mathematical continuum, as it is 

experienced directly. He cited the physical 

continuum as ‘a kind of fusion of 

neighbouring elements.’  

10th. The fusion of neighbouring elements, which 

Poincaré called physical continuum, was 

empirically demonstrated by him as: ‘we 

cannot distinguish tiny differenced weights of 

bodies through muscular sensation.’ That is, 

it very much impossible to distinguish a 20-

gram weighted body from that of 21 grams by 

lifting them. But we can sense the bodies of 

weights 20-gram & 22-gram by lifting them. 

Thus, he claimed that sensation of the weight 

is non-transitive, and hence muscular 

sensation never corresponds to numerical 

values, i.e., if 𝑃 = 20 𝑔𝑟𝑎𝑚, 𝑄 = 21 𝑔𝑟𝑎𝑚, 

𝑅 = 22 𝑔𝑟𝑎𝑚, then muscular sensation of 

these weights will hold the no-transitivity 

logic, i.e., 

 𝑃⏞
20 𝑔𝑚

= 𝑄⏞
21 𝑔𝑚

 & 𝑄
21 𝑔𝑚

= 𝑅⏞
22 𝑔𝑚

   
𝑀𝑢𝑠𝑐𝑢𝑙𝑎𝑟 𝑆𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 
⇒                     

𝑃⏞
21 𝑔𝑚

< 𝑅⏞
21 𝑔𝑚

     

11th. Boltzmann & Poincaré’s views on 

continuity of change- As per the 

assumptions of Boltzmann & Poincaré, a 

second kind of continuity that emphasizes the 

applicable of differential calculus in Physics 

was- “Change in nature takes place in a 

continuous manner.” 

12th. Under this version of continuity, Boltzmann 

encountered a problem while working with 

his entropy function for a thermodynamic 

system. Actually, he found himself in an 

awkward situation, when he analyses his H-
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curve of entropy. He noted that his entropy 

curve holds the property of non-

differentiability and thus bears no physical 

significance like the Weierstrass continuous 

but non-differentiable function. However, for 

justification, Boltzmann argued that ‘I do not 

find any reason of rejecting the entropy 

function because of its continuous but non-

differentiable nature’.         

13th. On the other hand, Poincaré’s attitude 

towards the Weierstrass function and 

Boltzmann entropy function was quite 

strange. One way, he admired the Weierstrass 

for his idea of continuous but non-

differentiable function. On the other way, he 

proclaimed that- ‘Weierstrass function has 

irradicated a century long intuition of 

mathematicians, which is- continuous 

functions always have derivatives.’ That is to 

say, continuous function need not be always 

differentiable.  

14th.  Ultimately, Poincaré in 1905, held that- The 

possibility of science relies on the continuity 

& differentiability of a function. Thus, to 

every science, continuity is a priori principle.            

6. Topological facets of continuity  

Following the idea of ‘closeness/ nearness’ ascribed 

by Bolzano, the 19th and 20th century topologists 

discovered some new avenues to continuity in 

topology, so that topology could be evolved in a more 

sophisticated way. 19th and 20th century topologists 

admitted that continuity can assist them in handling 

certain properties of topological spaces. They found, 

when a topological space under certain continuous 

function is transformed into another topological 

space, many of the properties of original topological 

space remain invariant or preserved. A German 

mathematician Felix Hausdorff (1868-1942) has been 

one of the famous fellows, who by admitting the 

importance of continuity in topology, pioneered the 

modern form of topology. In the subsequent 

subsections, we shall include some popular 

definitions, examples and results on continuity with 

special reference to topology. 

6.1 Felix Hausdorff- A redefiner of Bolzano’s 

continuity  

Hausdorff took the definition of continuity as 

described by Bolzano in a very mesmerizing sense. 

Instead of involving the notion of closeness/ nearness 

in terms of distance between objects of a set, 

Hausdorff has introduced the notion of 

‘neighbourhood’ and asserted the following: 

First. He assumed 𝑋 & 𝑌 to be two topological 

spaces, which he notified as set of points 

equipped with a class of neighbourhoods 

satisfying Hausdorff axioms.  

Second. He, further stated in one of his axioms that- 

the class of all neighbourhoods around all the 

points of 𝑋 form a countable class 

Third. Finally, with the aid of his topological 

axioms, he defined the continuity as below: 

Fourth. Definition 7(a): Let 𝑓 be a function with 

domain 𝑋 and co-domain 𝑌. Then 𝑓: 𝑋 → 𝑌 

will be continuous at any 𝑥1 ∈ 𝑋, if for any 

neighbourhood 𝑉 containing 𝑓(𝑥1), ∃ a 

neighbourhood 𝑈 containing 𝑥1, such that 

𝑓(𝑥2) ∈ 𝑉, whenever 𝑥2 ∈ 𝑈. 

Fifth. However, Hausdorff’s continuity principal 

can be re-stated as:  

Definition 7(b): Given a neighbourhood 𝑉 of 𝑓(𝑥1), 

if it is always possible to find a neighbourhood 𝑈 of 

𝑥1, such that 𝑓 transforms 𝑈 into 𝑉, then 𝑓 is called 

continuous at 𝑥1 ∈ 𝑋.  

6.2 Synchronicity of Hausdorff and Bolzano’s 

ideas of continuity 

This subsection is meant to illustrate the equivalence 

between Hausdorff and Bolzano’s definitions 

regarding the continuity of the function. Indeed, 

Bolzano and Hausdorff’s ideas become in 

synchronicity, whenever the Hausdorff’s notion of 

‘neighbourhood’ is expressed in terms of nearness/ 

closeness, i.e., distance.  

The synchronicity can be achieved by arguing the 

following: 

• Suppose 𝑓 be a real valued function with some 

domain of definition (domain to be considered 

as a subset of set of real numbers). 

• Now, in reference to Bolzano’s definition 

(Definition-4), Hausdorff’s definition 

(Definition-7a, 7b) can be delineated by 

introducing the neighbourhood as follows: 

• Definition 8: If we are given a neighbourhood, 

i.e., an open interval of width 2𝜖 centred at 

𝑓(𝑥0) and we symbolize this as 𝑁(𝑓(𝑥0), 𝜖). 

Further, if there exists a neighbourhood 

𝑀(𝑥0, 𝛿) of width 2𝛿 centred at 𝑥0 such that- 𝑓 

transforms 𝑀(𝑥0, 𝛿) into as 𝑁(𝑓(𝑥0), 𝜖), then 𝑓 

is continuous at the element 𝑥0. Likewise, 



Sandeep Kumar, Int. J. Sci. R. Tech., 2025 2(1), 181-204 |Review 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              199 | P a g e  

starting with the Hausdorff’s definition, we can 

arrive at the Bolzano’s definition by proceeding 

bottom to top. 

6.3 Topological continuity of 21st century  

Besides Felix Hausdorff, there were many other 

mathematicians, who from various other perspectives 

tried to enrich the literature of topological continuity. 

Among those, the German astronomer August 

Ferdinand Möbius (1790-1868), the German 

mathematician Adolf Hurwitz (1859-1911), the 

French mathematician Henri Poincare (1854-1912), 

the Polish topologist Kazimierz Kuratowski (1896-

1980) and the Polish mathematician Waclaw Sierinski 

(1882-1969) have been immensely recognized for 

their efforts in tuning the topology.    

With their charismatic work, the 21st century 

topological continuity and topological continua have 

been unveiled in the more explicit form and thus 

includes the following definitions and propositions: 

Steven G. Krantz in his famous book ‘Essentials of 

topologies with applications evoked that “The 

heuristic model for a continuum basically 

encapsulates the image of a curve in the plane and 

thus a continuum is a set that, should have no cuts or 

breaks” (Krantz, 2009). He defined the continuum 

with the aid of topology as-   

Definition 9: Continua- If 𝑋 be a compact connected 

Hausdorff space, it must be a continuum(Krantz, 

2009). Examples for witness can be; the unit interval 

𝐼 = [0,1], the unit circle in the plane and the torus.  

Actually, the definition of continuum (i.e., Definition 

9) is simply a generalization of the definition given 

by(Hocking, 1961) and is delineated as: 

Definition 10: Continuum is defined as- a compact 

connected subset of a topological space.  

In modern topology, the prominent device for 

comparing and contrasting topological spaces are the 

continuous mappings, provided such mappings are the 

functions that carry values in a space rather than real 

or complex numbers. 21st century topologists have put 

forwarded the notion of continuity by involving the 

inverse images of such mappings. The most 

customarily used definition of continuous function 

includes the following:  

▪ Let 𝑓: 𝐴 → 𝐵 be a mapping and let 𝑆 ⊆ 𝐵. 

Then the set 𝑓−1(𝑆) ≡ {𝑥 ∈ 𝐴 | 𝑓(𝑥) ∈ 𝑆} is 

called the inverse image of the set 𝑆 under the 

mapping 𝑓. 

▪ Definition 11a (Modern definition of 

continuity): Let (𝑋, τ) and (𝑌, 𝜏𝑌) be two 

topological spaces. A function or mapping 

𝑓: 𝑋 → 𝑌 is called continuous if, whenever 

𝑉 ⊆ 𝑌 is open, then 𝑓−1(𝑉) ⊆ 𝑋 is open.  

The same can be reinterpreted as: 

▪ Definition 11b (New Definition of 

continuity): Any function ψ: X → Y is 

qualified to be called as continuous function 

if, inverse image of every open set in Y is 

open in X  "  

These definition of continuity in topological sense 

held an important proposition regarding the 

equivalence between these and Weierstrass traditional 

definition of continuous function. 

Proposition 2: On the real line (with respect to 

standard topology) the traditional definition of 

continuity (i.e., Weierstrass Definition 6) is 

equivalent to the modern definition (i.e., Definition 

11a, 11b). 

Let us now include some examples based on the 

equivalence of traditional continuity and modern 

continuity definitions. 

Example 4: Let 𝑓:𝑹 → 𝑹 be given by 𝑓(𝑥) = 𝑥2. 

Discuss the continuity of 𝑓. 

Solution: From heuristic model of continuity in pre-

calculus as well as from the traditional model of 

continuity in calculus, we can easily observe that 𝑓 is 

continuous in both sense- i.e., we can draw its graph 

in a single stroke without lifting pencil from the paper. 

Also, being a polynomial, 𝑓 is continuous. However, 

here we try to examine its continuity in view of 

modern topological definition. 

For, let us take 𝑉 to be an open subset of the range 

space 𝑹. Moreover, we take 𝑉 to be an open interval 

𝐼 = (𝑎, 𝑏). Since, any open set is simply a union of 

open intervals. Then- 

▪ If 0 < 𝑎 < 𝑏, then 𝑓−1(𝐼) = (√𝑎, √𝑏) and 

that is an open set. 

▪ If 𝑎 < 0 < 𝑏, then 𝑓−1(𝐼) = (0, √𝑏) and 

again that is open set 

▪ If 𝑎 < 𝑏 < 0, then 𝑓−1(𝐼) = 𝜙 which is 

again an open set. 

▪ Thus, we have shown that 𝑓 is continuous 

with reference to the modern topological 

definition of continuity. 

Example 5: Assume that a set 𝑉 ⊆ 𝑸 is open if there 

is an open 𝑈 ⊆ 𝑹 in the usual topology, so that 𝑈 ∩
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𝑸 = 𝑉. Consider a function 𝑓:𝑸 → 𝑸 which is 

defined as follows: 

If 
𝑝

𝑞
 is a rational number expressed in lowest terms 

(i.e., 𝑝 & 𝑞 have no prime factors in common), with 𝑞 

positive, then set 𝑓 (
𝑝

𝑞
) =

1

𝑞
 . Determine whether 𝑓 is 

continuous at any point?  

Solution: As a matter of fact, 𝑓 is discontinuous 

everywhere. Because the values of 𝑓 are 
1

1
,
1

2
,
1

3
,
1

4
.. 

etc. 

Now if we take a neighbourhood 𝑉 of 
1

2
 in the image 

set 𝑸, it will be typically an open set. We shall take 

this neighbourhood to be an interval, which would be 

small enough so that it would not contain any of the 

other image points say (
1

1
,
1

3
,
1

4
…) etc. Ultimately, we 

observe that: 

𝑓−1(𝑉) = {⋯ ,−
5

2
, −

3

2
, −

1

2
,
1

2
,
3

2
,
5

2
, ⋯ }. In 

particular this one is not an open set. Hence 𝑓 is not 

continuous.  

6.4 How continuity helps evolving topology 

The modern definitions of continuity (namely 

Definition 11a, 11b) pave topologist the new avenues 

to excavate the topological contents into deeper 

possible cores. And presently, topologists of the 21st 

century are leveraged with many advanced 

topological tools in terms of axioms, propositions, 

theorems and lemmas etc. Though, there are a variety 

of devices for topological continuity to attack on 

continuity problems, we would include here a few of 

them.   

Theorem 1: Equivalent definitions of 

continuity(Munkres, 2000)  

Let 𝑋 & 𝑌 be topological spaces and let 𝑓: 𝑋 → 𝑌 be a 

mapping. Then the following statements are 

equivalent: 

a. 𝑓 is continuous  

b. For every subset 𝐴 of 𝑋, one has 𝑓(𝐴̅) ⊂

𝑓(𝐴)̅̅ ̅̅ ̅̅ , where bar stands for closure. 

c. For every closed set 𝐵 of 𝑌, the set 𝑓−1(𝐵) 

is closed in 𝑋. 

d. For each 𝑥 ∈ 𝑋 and each neighborhood 𝑉 of 

𝑓(𝑥), there exists a neighborhood 𝑈 of 𝑥 

such that 𝑓(𝑈) ⊂ 𝑉. If this condition holds 

for the point 𝑥 ∈ 𝑋, we say that 𝑓 is 

continuous at the point 𝑥. 

Examples based on Theorem 1:  

First. A bijective function can be continuous- 

example as a witness is the identity function 

given by 𝑔:𝑹𝑙 → 𝑹, where 𝑹𝑙 stands for 

real set-in lower limit topology. This 

identity function is continuous because of 

the following arguments: 

a. If we define the given identity function 

as- 𝑔(𝑥) = 𝑥 for all real numbers 𝑥 

b. Then the inverse image of open set (𝑎, 𝑏) 

is equal to itself, which is open in 𝑹𝑙. 

c. However, in contrast to 𝑔: 𝑹𝑙 → 𝑹, if 

ℎ: 𝑹 → 𝑹𝑙 be another identity function 

defines as ℎ(𝑥) = 𝑥 for all reals 𝑥. Then, ℎ 

is not a continuous function. Because the 

inverse image of open set [𝑎, 𝑏) of 𝑹𝒍 is 

equal to itself but it is not open in 𝑹.    

Second. Let 𝑆1 stands for the unit circle defined by 

𝑆1 = {𝑋 × 𝑌 | 𝑥2 + 𝑦2 = 1}. Further, 

consider a subspace of the plane 𝑹𝟐, and let 

𝐹: [0,1] → 𝑆1 be a map defined by 𝐹(𝑡) =

(cos 2𝜋𝑡 , sin 2𝜋𝑡). Then 𝐹 is evidently 

continuous as the continuity follows due to 

familiar property of trigonometric 

functions.   

As an extension of the Theorem 1, the following 

examples shall be more appropriate to held- that under 

continuous transformations, topological properties of 

the space remain preserved.    

Example 6: A circle can be transformed into a square 

under a certain continuous transformation and the 

vice-versa is also possible (Figure 9).  

Figure 9: continuous transformation of a unit 

circle into a square of diagonal 2 and vice-versa 

Example 7: As another example from topology, a 

coffee mug can be transformed into a doughnut and 

vice-versa under a continuous transformation (see S. 

M. Blinder "Coffee Mug to Donut" 

http://demonstrations.wolfram.com/CoffeeMugToDo

nut/ Published on March 7 2011) 

Example 8: There is another popular notion of 

continuous function that sends an interval onto two 
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disjoint intervals. That is, any function that maps a 

single interval into two disjoint intervals exists only 

when function rips/ tears the domain of definition. But 

ripping or tearing being prohibited specially in 

topology, therefore we can say that: Topologically, it 

is almost impossible to develop a continuous 

transformation which could map an interval into two 

mutually disjoint intervals. Thus, to make such a 

transformation continuous, one has to remove ripping 

or if ripping/ tearing is felt necessary in underlying 

transformation, it has to be repaired before 

completion of transformation action. 

6.5 Why ripping or tearing is not a continuous 

function?  

In Example 8, it is claimed that, it is nearly impossible 

to setup any continuous transformation, that could 

map an interval onto two disjoint intervals without 

ripping/ or tearing the domain interval. It does not 

mean that transformation involving tearing cannot 

made continuous, rather we can achieve continuity by 

diagnosing the ripping (if occurs) and then repairing 

it before the transformation completes its action, e.g., 

consider the following figure 11, wherein a knot (i) is 

mapped onto a circle (ii) by doing some kind of 

mathematical surgery for the injury/ cut on the knot 

before the transformation is completed.  

 
Figure 11: Knot (i) mapped onto circle (ii) under 

suitable continuous transformation with the aid 

of appropriate mathematical surgery done for the 

cut on the knot (i) before completion of the 

transformation. 

Example 9: Transforming an entire real line into a 

single point is a kind of continuous transformation  

Solution: Let us consider a point θ. Further let 𝑌 =

{θ} be any non-empty set. Let us evolve a topological 

space (𝑌, τ) for 𝑌 such that the topology τ = θ, ϕ. 

Then a map ψ:𝑅 → 𝑌, defined by ψ(𝑥) = θ ∀ 𝑥 ∈

𝑅 is a continuous transformation of an entire real line 

to a point.  

Further, the requirement of this example can be 

supplied through two ways- first by implementation 

of popular traditional criteria of continuity and second 

is by involving the modern topological continuity. 

Here, we try both of these approaches to obtain the 

solution. 

First. Traditional criteria of continuity- We 

consider sets ϕ ≠ 𝑋, 𝑌 ⊂ 𝑅 such that α ∈ 𝑋 

and θ ∈ 𝑌. Further, assume a map ψ:𝑋 → 𝑌, 

defined by the rule ψ(𝑥) = θ ∀ 𝑥 ∈ 𝑋 i.e., 

the function defined in this fashion remains 

constant throughout its action on the domain 

of definition. Then, under this assumption, 

the function will map entire real line into a 

single point.  For this, we assume that ϵ > 0 

is any real number. Let δ = 1 (which is of 

arbitrary choice and we could have let it be 

∞, if that were a number). Then, whenever 

the elements 𝑥 ∈ 𝑋 be such that 0 < |𝑥 −

α| < 𝛿, it is also the case that: |ψ(𝑥) −

ψ(α)| < ϵ i.e., |ψ(𝑥) − ψ(α)| = |θ − θ| =

0 < ϵ. Since ϵ was arbitrary, we have 

succeeded in finding δ > 0 for every ϵ > 0, 

which implies 𝐿𝑖𝑚𝑥→αψ(𝑥) = ψ(α) (by 

definition of limit), so ψ is continuous at α. 

This result implies that the 

transformation ψ(𝑥) = for all 𝑥 ∈ 𝑅, i.e., 

𝑅 ≡ (−∞,+∞)can be mapped into a point 

θ ∈ 𝑌.  

Second. Modern criteria of continuity- Suppose 

ψ:𝑋 → 𝑌 be a constant function, where 𝑋 and 

𝑌 be any two topological spaces, then to 

prove that ψ be continuous, we proceed like 

below: 

Assume that ψ is defined as ψ(𝑥) = θ ∀𝑥 ∈ 𝑋. 

Taking any open set 𝐺\𝑠𝑢𝑏𝑠𝑒𝑡𝑒𝑞𝑋, then by definition 

of inverse image, ψ−1(𝑂) = {𝑥 ∈ 𝑋| ψ(𝑥)  ∈  𝑂} =

{𝑥 ∈  𝑋|θ ∈ 𝑂}, since ψ(𝑥) = θ constant. So, if θ ∈

𝑂 then ψ−1(𝑂) = 𝑋 the whole space. 

But, if θ ∉ 𝑂, then ψ−1(𝑂) = ϕ. Thus, in either case 

the inverse image ψ−1(𝑂) is open in X, so by 

assumption that any arbitrarily chosen open set of 𝑌 

has an inverse image in X, which is open too in 𝑋. 

However, there is another approach to deal with 

example (9), which is popularly known as- the rule for 

constructing continuous function and is being 

discussed below(Munkres, 2000): 

Theorem 2 ‘Constant function rule’: If ψ: X → Y 

maps all of X into single point θ0 of Y, then ψ is 

continuous. 
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If we implement this constant function rule to 

example (9), it naturally follows that- though the line 

and a single point are entirely different looking 

spaces, then also, a line (one dimensional entity) can 

be transformed continuously into a point (zero-

dimensional entity), but the reverse process is 

impossible, i.e., we can not ‘undo  ’this 

transformation.  

Apart from the section 6, which is devoted to the 

topological continuity, there remains one more aspect 

of continuity to be tackled with closeness of metric. 

The following section briefly includes few popular 

results on metric continuity. 

7.  Continuity in terms of closeness of metric on 

real line  

Hitherto, we have gone through many conditions 

which held that- 

First. The continuity of any function under the 

characteristic signature of every continuity 

condition was to decide upon an explicit 

formulation of the statement “a member 

𝒇(𝒙) is close to the member 𝒇(𝒄), whenever 

the number 𝒙 is close to 𝒄”.   

Second. The advent of distance function for real 

numbers 𝑹 has quantified the amount of the 

“degree of nearness or closeness” of two 

numbers. 

Third. The mathematical formulation of “degree of 

nearness or closeness” in the sense of 

metric function led mathematician to ascribe 

continuity under the influence of metric 

functions.  

Fourth. Primarily, an informal definition of 

continuous function aided with metric 

function was given as(Mendelson, 1990)- 

“The function 𝑓:𝑹 → 𝑹 is continuous at the 

number 𝑐 ∈ 𝑹, if given a prescribed degree 

of nearness, 𝑓(𝑥) must be within this 

prescribed degree of nearness to 𝑓(𝑎), 

whenever 𝑥 is within some corresponding 

degree of nearness to 𝑐” 

Fifth.  However, the fourth statement was 

formalized by notifying the symbols 𝜖 and 𝛿 

for the phrases ‘prescribed degree of 

nearness’ and ‘corresponding degree of 

nearness’ respectively.  

Sixth. Finally, a symbol 𝑑 = 𝑚𝑒𝑟𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 was 

coined to correspond the phrase “degree of 

nearness”. 

Seventh. With these formulations, continuity in terms 

of metric function has got the form: 

Definition 12: Let (𝑋, 𝑑1) and (𝑌, 𝑑2) be 

metric spaces, and let 𝑓:𝐷 ⊂ 𝑋 → 𝑌 be a 

function. Then, this function is said to be 

continuous at some 𝑥0  ∈ 𝐷 if given 𝜖 > 0, 

∃ a 𝛿 > 0 such that: 𝑑2(𝑓(𝑥), 𝑓(𝑥0)) < 𝜖, 

whenever 𝑑1(𝑥, 𝑥0) < 𝛿  ∀𝑥 ∈ 𝑋. 

Eighth. The idea of  ‘closeness ’can also be admitted 

when we think of continuity of sequences. In 

fact, the continuity in metric spaces can also 

be understood in the flavor of sequences. 

Here is a famous theorem of topology, which 

characterizes the continuity of any metric 

space in terms of the convergence of 

sequence in that space.: 

Ninth. Theorem 3: Let (𝑋, 𝑑1) and (𝑌, 𝑑2) be 

metric spaces, and let 𝑓:𝐷 ⊂ 𝑋 → 𝑌 be a 

function. Then, this function is said to be 

continuous at some 𝑥0  ∈ 𝐷 if and only if, 

whenever 𝑥𝑛: 𝑛 ∈  𝑍
+ is a sequence in D that 

converges to 𝑥0, then the sequence 

𝑓(𝑥𝑛): 𝑛 ∈ 𝑍
+ converges to 𝑓(𝑥0) in Y 

Tenth. In the light of above theorem, one can 

deduce that: “Any function between any two 

metric spaces will be continuous, if and only 

if the function preserves the convergence of 

sequences.”  

CONCLUSION 

In the present digest, we have tried to encapsulate the 

notion of mathematical continuity from the 

perspective of ancient and modern masterpieces of 

wisdom. Specially, we have tried to include the 

arguments on continuum/ continua, infinitesimal and 

continuity proposed by four categories of wisdom 

seekers, namely Philosophers, Geometers, 

Arithmetizers and Topologists. We have taken Henri 

Poincaré’s statement as an inspiration to this digest on 

continuity and initiated with the divisionism of Greek 

atomist philosopher Democritus (450 BC) and 

Eudoxus (350 BC). Afterwards, Aristotle’s arguments 

on indivisibility and axioms of continuity have been 

discussed. Subsequently Simplicius fluxion, 

Euclidean postulates and elementary doctrine of 

continuity, and Killing’s rule for intersection points 

have been studied. Further, in subsequent sections and 

subsections, 17th & 18th century polymaths like 

Leibnitz’s monadism, Newton’s fluxions calculus, 
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Euler’s refutation to monadism and Kantian 

phenomenal realm & noumenal realm are introduced. 

The approaches adapted by 19th and 20th century 

polymaths, namely closeness of Bolzano, limit 

perspective to continuity of Cauchy, epsilon-delta 

method of Weierstrass, Dedekind’s postulates of 

continuity and Cantor’s continuum with reference to 

1-1 correspondence have been included in this digest. 

Finally, topological facets of continuity with special 

reference to Hausdorff’s notion of neighborhood and 

a brief of 21st century continuity along with some 

examples have also been delineated. In a nutshell, in 

this digest, the notions of continuity, continua and 

infinitesimal have been revisited from almost each 

possible dimensions of the historical evolution of 

human intellect      
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